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ABSTRACT
In this work, we present the experimental assessment of a
parallel framework that allows to reduce the energy con-
sumption of MPSoC platforms running hard real-time sys-
tems. We use a power-aware Fork-Join task model based on
primitives of the OpenMP library, a scheduling algorithm
to execute such model and a schedulability test from the
literature to ensure that all timing requirements are met
while the energy consumption of the whole system is re-
duced. Practical experiments involving the deployment of
OpenMP applications on a parallel embedded real-time ope-
rating system and power measurements on a MPSoC board
through an oscilloscope probe show that intra-task paral-
lelism helps to reduce the total energy consumption of the
system in a realistic setting.
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1. INTRODUCTION
Platform designers left the uni-core era for more than a

decade nowadays mostly because they reached the limit of
frequency scaling in terms of chip power consumption and
heat dissipation [13]. In order to continue delivering de-
vices of increasing performance while ensuring stable power
consumption, they now try to exploit circuit parallelism as
much as possible by reproducing several symmetric pro-
cessing units (or cores) on the same processor platform.
Even embedded system vendors provide multi-core chips,
also called Multi-Processor System-on-Chips (MPSoC).
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Meanwhile, the software community, at both system and
application layers, still struggles to deliver system perfor-
mance scaling with the increasing number of computational
units available on a single platform. At software level, data
structures shared across cores must be protected from con-
current accesses to ensure coherent execution of the sys-
tem. Mutual exclusion used in excess implies the seriali-
sation of execution which leads to poor scalability and poor
predictability.

The research community invests a lot of effort in improv-
ing system performance and predictability in terms of timing
analysis. In the meantime, work on energy consumption for
multi-core real-time workloads is not explored in depth, even
though it is a critical resource for most embedded systems.

A common technique that is used to reduce energy con-
sumption consists in dynamically decreasing the operating
voltage and frequency of the target platform when its CPU
load is low. Reducing voltage results in a decrease of the
dynamic power consumption by a polynomial factor. How-
ever, reducing the frequency inevitably leads the system to
a higher load of the computing platform. Therefore, the sys-
tem designer must ensure that the application jobs are ca-
pable of meeting their deadlines for any operating frequency
selected at run-time by the operating system.

Platform designers introduced multi-core systems mainly
for power consumption reasons. Meanwhile, most power-
aware real-time researchers as well as embedded software
vendors have focused on techniques working either on uni-
core systems or on multi-core systems with a sequential job
model of execution (i.e., at any time a job can only be ex-
ecuted on a single core), thus limiting the potential ene-
rgy savings [11]. As stated by Baruah and Anderson [1], “
[...] in the job model typically used in real-time scheduling,
individual jobs are executed sequentially. Hence, there is
a certain minimum speed that the processors must have if
individual jobs are to complete by their deadlines [...]”. On
the other hand, a parallel job model of execution, where
each task of the system could express intra-task parallelism
and then could run on multiple cores simultaneously, would
imply a better distribution of the workload across cores. It
would decrease the minimum viable frequency and then lead
to lower power consumption and better energy efficiency.



While previous work has proven the theoretical benefits of
intra-task parallelism on energy consumption [11], the aim of
this paper is to empirically evaluate these potential energy
gains on a real experimental testbed.

We present a practical run-time framework to run par-
allel real-time applications on embedded systems and opti-
mize their energy consumption. To express parallelism in
user code, these applications are written in C with OpenMP
pragmas. Therefore, the underlying run-time system sup-
ports the OpenMP primitives. This framework is composed
of:
• an embedded MPSoC board based on an ARM Cortex-

A9 processor with 4 cores;
• HIPPEROS , a parallel real-time operating system ker-

nel [10];
• a port of the OpenMP run-time library for that kernel;
• application tasks written in C with OpenMP.

To support the theoretical foundations of our run-time
framework, we provide a model matching the constraints
of the framework, together with an existing schedulability
test of the literature [2] and a heuristic capable of optimiz-
ing the power consumption of the system by selecting the
appropriate processor frequency for each task.

The goal of this research is to show with practical exper-
iments that real-time parallel systems can save more ene-
rgy than their sequential equivalents for the same workload.
More specifically, we want to show that with appropriate
mechanisms (a power-aware scheduling algorithm, DVFS ca-
pabilities and an offline energy optimization process), the
energy savings depend on the degree of parallelism of the
user tasks.

The contributions of this research can be summarized as
follows:
• We propose a practical, system-level framework to de-

fine parallel hard real-time systems and schedule them
with a power-aware policy.
• We provide a realistic experimental evaluation of our

framework by implementing a set of use case programs,
mapping them to randomly generated (but schedula-
ble) hard real-time systems and running them on top
of a real-time operating system deployed on a MPSoC
board.
• Power measurements are made with an oscilloscope to

evaluate the potential benefit of exploiting parallelism
to improve energy efficiency on real running systems.

As our results show that increasing the degree of paral-
lelism (i.e. adding threads to the execution of a task) tends
to lead to better energy savings, this work suggests a wider
adoption of power-aware intra-task parallelism techniques
for the design of embedded real-time applications.

The paper is organized as follows: Section 2 introduces our
parallel run-time framework by describing intra-task par-
allelism with the use of OpenMP, the chosen RTOS and
the embedded platform used in the experiments. Section 3
presents the experimental setup used to measure energy sav-
ings and the use cases that we used for the evaluations. Sec-
tion 4 explains the intuition behind the techniques by run-
ning some measurements on individual parallel programs.
Sections 5, 6 and 7 present the methodology, the algorithms,
the conducted experiments and the results obtained in terms
of energy consumption on multi-tasked and multi-core real-
time systems. Sections 8, 9 and 10 respectively present re-
lated and future work and concludes the paper.

2. PARALLEL RUN-TIME FRAMEWORK
In this section, we explain the system-level details of the

run-time framework that we propose. We also explain its
implementation for the experiments of this paper.

2.1 Intra-task parallelism and OpenMP
To design hard real-time workloads, we assume applica-

tion developers write programs in the C language with the
OpenMP library. OpenMP is a portable API for shared-
memory multi-core processors that allows to write paral-
lel programs. The parallel regions of these programs are
defined by using the #pragma omp parallel construct of the
OpenMP library. This mechanism allows to distribute work-
load among different threads running on different cores. An
example of the structure of such a parallel program is given
in Listing 1.

1 i n t main ( )
2 {
3 con s t i n t num steps = 1000 ;
4 omp set num threads (4 ) ;
5

6 #pragma omp p a r a l l e l
7 {
8 i n t nbt = omp get num threads ( ) ;
9 i n t t i d = omp get thread num ( ) ;

10 i n t i s t a r t = ( t i d ∗ num steps ) / nbt ;
11 i n t i e n d = ( ( t i d + 1) ∗ num steps ) / nbt ;
12

13 f o r ( i n t i = i s t a r t ; i < i e n d ; ++i ) {
14 /∗ work load execu ted i n p a r a l l e l ∗/
15 }
16 }
17

18 r e t u r n 0 ;
19 }

Listing 1: Example of structure of an OpenMP program.
The for loop is executed in parallel.

The code block under the #pragma omp parallel statement
(lines 7–16) is the region of the program that will be exe-
cuted in parallel by several threads of the underlying ope-
rating system. The main thread of the running process,
called the master thread, starts the execution at the main
function and sets the limit on the number of threads that
have to be created for the execution of the parallel region.
When the master thread reaches the OpenMP pragma, it
creates enough threads by forking itself to execute the par-
allel region. These newly created threads are called worker
threads. Worker threads finish their execution at the end of
the pragma scope, while the master thread (after having ex-
ecuted its own parallel part of the program) waits for them
to finish (the join mechanism) before carrying on the execu-
tion of a non-parallel stage of the program. The execution
flow of an OpenMP program with fork and join procedures
is illustrated by Figure 1. The expected benefit of this for
loop parallelisation is a substantial reduction in the program
execution time.

These parallel programs constitute user tasks of our pro-
posed framework. As explained later in this work, they
come with hard real-time requirements on their execution.
These user tasks are compiled using a C cross-compiler tool-
chain to generate code compliant with the targeted embed-
ded platform. Since version 3.7, the LLVM-based Clang
compiler fully supports OpenMP pragmas. This compiler
supports a large variety of back-end architectures, including
ARM Cortex-A9 which was used in the experiments (see Sec-
tion 3).
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Figure 1: Scheme of an OpenMP program.

It is important to notice that the OpenMP API does not
constrain the scheduling policy used to execute the created
threads. Different thread allocation and scheduling policies
can easily be implemented at the operating system level. In
this research, as explained later in the paper, we limited
ourselves to Fixed Task Priority (FTP) assignment.

2.2 The HIPPEROS RTOS
The chosen embedded real-time operating system (RTOS)

is HIPPEROS . It is a multi-task and multi-core real-time
operating system targeting reliable and efficient embedded
hard real-time systems [10]. The kernel has support for both
power-aware scheduling and intra-task parallelism using par-
titioned threads. HIPPEROS has been developed from the
ground up as a multi-core RTOS and as such natively sup-
ports multi-core scheduling at kernel level [10]. HIPPEROS
provides a build-system written in CMake that can be used
to integrate user tasks, libraries and the RTOS into binary
images. These binary images can then be deployed on the
supported target systems. For this research, we developed
a port of the OpenMP run-time library for HIPPEROS .
We implemented the same primitives as defined by the In-
tel OpenMP run-time library which is well documented and
compatible with the latest Clang release.

The HIPPEROS kernel combined with the HIPPEROS
OpenMP Run-Time Library (HOMPRTL) allows system de-
signers to define parallel user tasks written with OpenMP
pragmas and to schedule them with a power-aware policy,
which is what we seek for the framework we propose.

HIPPEROS can be packaged with a variety of compile-
time build options. For this research, we chose a package
implementing static priority scheduling (allowing to deploy
scheduling policies as rate and deadline monotonic) and a
power-aware policy which associates an operating frequency
to each task. How the priority, the core affinity and the
speed of each task are assigned in the context of our frame-
work is explained in Section 6.3.

2.3 Embedded platform
The embedded platform is a symmetric multi-core proces-

sor, meaning that each core of the platform can execute each
application at the same speed. These cores will carry the si-
multaneous execution of the different OpenMP threads.

The platform has homogeneous Dynamic Voltage and Fre-
quency Scaling capabilities (DVFS), meaning that all the
cores run at the same frequency but this frequency can be
changed at run-time by the operating system. In the con-
text of our parallel OpenMP task framework, the absence of
heterogeneous frequency is not a very disruptive constraint
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Figure 2: Hardware setup. The PC sends the RTOS and user
tasks images to the embedded board and initialises the oscillo-
scope. At RTOS startup, a trigger is sent from the board to the
oscilloscope to start the acquisitions. Voltage values are then mea-
sured on the boundaries of the leakage resistor while HIPPEROS
schedules the user tasks with a multi-threaded power-aware pol-
icy.

as the goal is to execute a maximum number of symmetric
threads in parallel (as depicted by Figure 1). As explained
later in the paper, we tried in our experiments to maximise
the degree of parallelism to reduce the energy consumption.

There is a finite and relatively small set of pre-defined
operating points supported by the operating system, which
are defined as couples of voltage and frequency values. The
values of the different voltage and frequency couples are de-
termined in order to minimize the power consumption of the
platform, by taking the maximum viable frequency value for
each possible voltage value.

These characteristics are present in the actual hardware
platform we used in our experiments which is based on the
ARM Cortex-A9 multi-processor architecture.

3. EXPERIMENTAL SETUP
In this section, we describe how and with what tools we

actually implemented the framework presented in Section 2.

3.1 Experimental testbed presentation
We built an experimental testbed that allows us to evalu-

ate energy consumption gains using real embedded software
and hardware. To execute embedded real-time systems,
we selected an embedded development board supported by
the HIPPEROS RTOS. The selected embedded board is
the Boundary Devices Sabrelite (BD-SL-i.MX6) with the
Freescale i.MX6q processor platform which is a MPSoC that
implements a four cores Cortex-A9 ARM architecture. This
board has been chosen for the following reasons:
• Multi-core with 4 ARM Cortex-A9 architecture (which

is supported by HIPPEROS);
• DVFS features are available on this Freescale platform

design with several possible operating points — notice
that only homogeneous frequency is available (a single
global frequency for all the cores).

These elements show that this embedded board is a perfect
match for our use case.

According to the policies defined in later sections of the
paper, the HIPPEROS RTOS sets the clock frequency as
well as the operating voltage, thus effectively allowing us
to reduce the total energy consumption of our system. In
order to measure the total power consumption of the sys-
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Figure 3: Voltages trace of the execution of a HIPPEROS sys-
tem running three periodic tasks. Voltage measurements clearly
show an execution pattern occurring at each hyper-period (10
seconds).

tem we inserted a 1 Ω resistor on the power line between
the board and its power supply (see Figure 2). While the
system was executing tasks we measured the voltage across
the resistor using the digital sampling oscilloscope Infiniium
MSO9254A. The board as well as the oscilloscope were con-
nected to a Personal Computer to control the execution flow
of the experiments. Specifically, the PC was responsible for
deploying the HIPPEROS system image on the board and
to initialise the oscilloscope to start and stop voltages acqui-
sitions. Using this setup we obtained voltage traces similar
to Figure 3. Power values are then computed from volt-
age values by knowing the circuit structure and the energy
is computed by computing the numerical integration of the
power values over the experiment time.

3.2 Use cases description
Use cases are application programs written in C with

OpenMP pragmas (as presented in Section 2). The use
cases’ code structure is similar to the one of Listing 1. The
use cases will be the code associated to periodic real-time
tasks of our evaluation, meaning that each time a periodic
task releases a job, the program that will be executed will
be the one defined by the associated use case.

We selected three use cases that are representative of dif-
ferent typical applications of the real-time domain:
• the π (or simply “pi”) use case: this program simply

computes the value of π with a classic approximation
of a Riemann integral of the function f(x) = 4

1+x2

between 0 and 1. It could represent any CPU-intensive
numerical program. It is easy to implement in parallel
by distributing to the different threads an equal share
of the area to compute under the curve.
• the Image use case: this program applies an edge-

detection filter on a given input image stored in mem-
ory and produces the corresponding output image in
memory. Each parallel thread is responsible for apply-
ing the filter on an equal part of the image. Multiple
configurations of this use case were used to show the
effect of the size of the image (and therefore, memory
footprint) on execution time.
• the AES use case: this program takes as input a plain

text and a key stored in memory and applies the Ad-
vanced Encryption Standard algorithm to produce the
corresponding cipher text. Each thread is assigned an
equal sub-string of the plain text to cipher. As AES is

Voltage (mV) Frequency (MHz)

1100 876

1125 948

1150 1008

1175 1068

1200 1116

1225 1164

1250 1212

1275 1260

1300 1296

Table 1: Table of operating points. The voltage and frequency
couples were obtained empirically.

a block cipher encryption algorithm, each block is en-
crypted independently from the others; therefore there
is no data dependency and the program is easily par-
allelised.

As the π use case is CPU-intensive, the other two should
have a fair utilisation of the memory (and then access to
shared resources like memory buses, etc.). We expect then
with these three use cases to evaluate realistic scenarios of
real-time applications that can have a good parallelisation
profile. Actual execution time profiles and energy profiles of
these use cases are shown and discussed in Section 4.2.

4. EXPECTED POWER SAVINGS
In this section we explain the basic rationale behind this

work. We confront the CPU power consumption model with
preliminary measures on systems running a single task at
different processor frequency and with different degrees of
parallelism thus varying the number of simultaneous active
cores of the platform.

4.1 Power consumption model
Li et al. [9] provide detailed models of power and ene-

rgy consumption for multi-core real-time systems. Gener-
ally, the instantaneous power consumption of a multi-core
processor with homogeneous voltage and frequency can be
modeled as follow:

P (f, Vdd, k) = k(αV 2
ddf + βVdd) + γ (1)

where f is the operating frequency, Vdd is the supplied volt-
age (the couple (Vdd, f) forms the current operating point
of the platform) and k is the number of active cores. α,
β and γ are inherent constants depending on the processor
manufacturing technologies, such as switching capacitance,
current leakage, etc.

As chip designers understood it while entering into the
multi-core era, Equation 1 shows that adding cores to a
platform only contributes linearly to the power consump-
tion while increasing the frequency and voltage can result in
quadratic or cubic contribution to the power consumption.

This suggests therefore that a computational model ca-
pable of distributing work on several cores rather than in-
creasing the voltage and frequency would result in better
energy savings while increasing the execution capabilities of
the platform.

4.2 Measuring a running OpenMP program
The following simple experiments using the setup described

in Section 3 confirm the intuition given by the power model.



876 948 1008 1068 1116 1164 1212 1260 1296
Frequency (MHz)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
E
x
e
cu

ti
o
n
 t

im
e
 (

se
co

n
d
s)

pi usecase

Sequential
2 threads
3 threads
4 threads

a: Execution time of the pi use case in
all configurations.

876 948 1008 1068 1116 1164 1212 1260 1296
Frequency (MHz)

0.9

1.0

1.1

1.2

1.3

1.4

1.5

S
p
e
e
d
u
p
 R

a
ti

o

Speedup ratio of use cases over frequency (1 thread).

Pi
AES
Image,  480x480
Image,  640x1024
Image, 1024x1024

b: Speedups obtained in execution time
for the different use cases by changing
voltage and frequency.

1 2 3 4
Number of Threads

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

S
p
e
e
d
u
p
 R

a
ti

o

Speedup ratio of use cases over number of threads (876 MHz).

Pi
AES
Image,  480x480
Image,  640x1024
Image, 1024x1024

c: Speedups obtained in execution time
for the different use cases by changing the
degree of parallelism.

876 948 1008 1068 1116 1164 1212 1260 1296
Frequency (MHz)

0.7

0.8

0.9

1.0

1.1

P
e
a
k
 p

o
w

e
r 

(w
a
tt

s)

pi usecase

Sequential
2 threads
3 threads
4 threads

d: Peak power of the pi use case in all configurations.

876 948 1008 1068 1116 1164 1212 1260 1296
Frequency (MHz)

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

E
n
e
rg

y
 (

jo
u
le

s)

pi usecase

Sequential
2 threads
3 threads
4 threads

e: Energy consumption of the pi use case over a fixed time in
all configurations.

Figure 4: Single task execution measurements.

These measurements are based on the individual execution
of each of our use case programs as
described in Section 3.2.

The operating points selected for our experiments are
shown in Table 1.

We deployed HIPPEROS systems with a single task ex-
ecuting one of our use case program on our experimental
testbed (in the figures the pi use case is represented). We
executed this use case a certain number of times and each
time we varied (1) the number of threads used by the task
in its parallel stage (from 1 to 4) and (2) the operating point
of the processor (from 876 to 1296 MHz).

For each setting we measured the total execution time and
the instantaneous power consumption of the platform. The
power consumption was measured over a fixed period of time
longer than the longest execution. We noted experimentally
that this longest execution corresponds to the setting where
a single thread of execution was allocated to the parallel
stage – the sequential case – and the smallest operating point
was set. In the following, we call this setting the reference
execution time of a task.

Figure 4a shows the execution times of the pi use case.
The data suggests that at least when it comes to this use
case, the expected behaviour is correct: increasing the num-
ber of threads (and therefore the number of cores) associated
to a task and/or increasing the frequency results in a sub-
stantial reduction of the execution time. We measured the
gained speedup in execution time for each of our use case
run individually. For the image use case, we tried with dif-
ferent image resolution in order to vary the memory access
patterns and get a realistic view of the expected speedup.

Execution time speedups due to frequency scaling (resp. de-
gree of intra-task parallelism) are shown in Figure 4b (resp.
Figure 4c). We see that the more the task needs to access the
memory, the worst the speedups are with frequency scaling.
This does not hold for the speedups due to multi-threading.
For CPU-bounded task (the π use case here) the speedups
are near to perfect for both techniques.

To evaluate the costs in terms of power consumption of
these speedups, Figure 4d shows the peak power being drawn
by the board for the pi use case. The peak power is defined
as the maximum power consumption of the system while ex-
ecuting the use case. As the power is more or less constant
during the execution of the use case, it represents the aver-
age power consumption. The intuition given by Equation 1
is confirmed by this figure. We see that the power cost
to increase the frequency is way larger than adding cores.
Moreover, OpenMP threading techniques achieve way bet-
ter execution time speedups than scaling the frequency up
for cheaper power costs.

Finally, the same trade-off between time speedup and
power can be observed by computing the energy consump-
tion of the tasks for the different settings (which is the actual
resource that we want to reduce the usage). Figure 4e shows
the energy consumption of the board over a fixed period of
time larger than the reference execution time for the pi use
case. Notice that in the experiments the system switches
in idle state when the task finishes, a state where the power
consumption is minimal (and therefore has a small contribu-
tion to the total energy consumed). Two main observations
can be made. Firstly that the introduction of parallelism
greatly reduced energy consumption across all frequency set-
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Figure 5: Task model. The nodes of each task τi are divided
into segments horizontally and into stages vertically.

tings, secondly that the sequential scheme is affected more
sharply by the frequency of the platform in terms of energy.

We obtained similar results for each use case run individu-
ally. Therefore for the purpose of brevity, we do not include
the individual charts of each use case in the paper.

As a preliminary conclusion, we can already state that
parallelism (i.e. adding cores to a task) seems to be an effi-
cient way to reduce energy consumption or have better time
speedups than scaling the platform frequency and voltage
up. Multi-threading techniques like OpenMP can help to
achieve this goal, which was one of the main rationale of the
hardware designer when introducing symmetric multi-core
platforms on the market. The next sections of the paper will
be dedicated to show that this holds also for multi-tasked
hard real-time systems running on platforms with multiple
cores. In these system-wide experiments, the different use
cases will be executed concurrently and the individual power
contributions of each use case will be aggregated in an eval-
uation of the system energy savings.

5. SYSTEM MODEL
In this section we present the model used to analyse the

multi-tasked and multi-thread real-time systems evaluated
in the experiments.

5.1 Parallel Task Model
We represent the multi-thread processes with a fork-join

task model similar to the one used by Axer et al. [2]. We
consider a set τ of synchronous periodic fork-join tasks with
implicit deadlines. Each task τi is released every Pi time
units. Tasks are comprised of nodes τσ,s, where σ is a seg-
ment and s is a stage, which means that τσ,s is the node
of stage s in segment σ. Naturally, for task τi the corre-
sponding nodes are noted τσ,si . See Figure 5 for a graphical
representation of this model.

There can only be at most one node corresponding to a
segment and stage pair. The concept of segment denotes
that a collection of nodes of different stages are to be parti-
tioned on the same core. The stages of a task are ordered in
sequence. A node belonging to a given stage cannot be exe-
cuted before all the nodes of previous stages are completed
(i.e., finished their execution).

In this paper we use a restrictive model where all tasks
have 3 stages, as illustrated by the program structure in
Listing 1, by the execution flow chart in Figure 1 and by the
task graph in Figure 5. This restriction allows us to define
a simple partition mapping and fits the use cases we study
in the scope of our experimental evaluations. The first and
the last stages (which are part of the execution of the master

thread) are sequential (i.e., they only have one node) and the
middle stage is the parallel stage (i.e., it might have more
than one node). If the middle stage has exactly one node
then the task is said to be sequential. The two nodes of the
first and last stages, as well as exactly one node of the middle
stage are parts of the same segment. Each node τσ,si has the
worst-case execution time Cσ,si . The segments defined in
this section conceptually correspond to HIPPEROS threads
generated from OpenMP parallel constructs.

5.2 Platform, Power and Energy Models
We denote by m the number of available symmetric cores

of the platform. Within the scope of our framework, we
assume that power consumption at any time P (V, f) is a
non-decreasing monotonic function of the running voltage
and frequency of the platform, and therefore depends on
the currently selected operating point. We do not need a
more detailed power model as:
• our scheduling analysis framework is based on a selec-

tion of operating points that are strictly ordered by
voltage and frequency (see Table 1);
• only the offline analysis (partitioning and operating

point selection) is influenced by the accuracy of this
model;
• for the experiments, we directly measure the power

consumption on a real embedded board to derive re-
sults on the energy efficiency of our technique.

The energy consumption is simply defined as the integral
of the measured power over time.

6. ALGORITHMS AND POLICIES
To be able to run energy-efficient systems for each possi-

ble degree of parallelism, we used offline analysis techniques
to optimize task sets before loading them on the hardware
platform. Each task set is only run on the target platform
using operating points and partition definitions found during
the offline analysis described in this section. As the object
of this research is not to provide new analysis techniques
for low power systems nor even to demonstrate the use of
such techniques but rather to demonstrate the impact of in-
troducing intra-task parallelism on power consumption, the
details of the analysis are kept to a minimum in this paper.

The analysis of a system is a process illustrated in Fig-
ure 6. The figure shows two nested cycles. The outer cycle
corresponds to Section 6.1 considering the set of configu-
rations of operating points in a greedy manner, registering
solutions each time a better one is found. The inner cycle
corresponds to Section 6.2 testing over the set of task par-
titionings for the configured system until either a feasible
solution is found or the set is exhausted. This process is
a practical use of various existing results in fork-join task
scheduling theory. As input, it takes an upper-bound of the
worst-case execution times for each use case for each con-
figuration (chosen degree of parallelism and set operating
point). For this research, we neglected the effect of shared
resources such as memory buses, caches and task interfer-
ences on timings.

6.1 Offline Power Optimization
Within our framework, we implemented a task-level DVFS

policy, meaning that an operating point is statically assigned
to each task of the system. This means that whenever a
job from a given task is being executed, the frequency (or
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Figure 6: Flow chart representing the analysis process.

a higher one) that has been assigned to that task is used.
Therefore, the operating system is responsible to change (if
need be) the operating point of the platform (this is a global
setting on the platform considered in this paper) to a value
appropriate for a task when a job of this task is scheduled.

The number of configurations (i.e. choices of operating
points per task) per set of tasks is potentially large. The
simplified power model introduced in Section 5.2 is used to
derive an offline optimization heuristic to minimise the ene-
rgy consumption of a task system.

The degree of parallelism is fixed for one execution of this
optimisation step. Therefore, the heuristic starts by assign-
ing the highest operating point to each task (resulting in the
highest expected energy consumption profile) and attempts
to greedily decrease it by decreasing the operating points of
individual tasks, one at a time. To validate that a set of tasks
with these assigned operating points will be schedulable on
the experimental platform, a partitioned schedulability test
is used.

6.2 Partitioned Schedulability Test
We used an implementation of a schedulability test algo-

rithm derived from the response-time bound based on the
work by Axer et al. [2]. In that work, the authors showed
that the stages of a fork-join task can be considered in se-
quence starting with the first one without any backtracking
to maximize the response-time of the last stage, provided a
conservative approximation method for the response-time of
each stage is used.

The use of this schedulability test introduces significant
pessimism in systems with parallel tasks compared to se-
quential tasks. Many such systems are schedulable using
some Fixed Task Priority (FTP) scheduling algorithm but
do not pass the schedulability test. Globally, this results
in higher frequency and voltage requirements and therefore
power consumption for parallel tasks than what could be
achieved with a more accurate test.

Unfortunately, this test was found flawed by Fonseca et
al. [7]. However, this does not impact our results as dis-
cussed in Section 7.3.

6.3 Online Scheduler
The HIPPEROS RTOS is capable of scheduling processes

and threads according to any Fixed Task Priority (FTP)
assignment. To be compliant with the schedulability testing
and power optimization procedure described in the previous
sections, Rate Monotonic is used. The fixed partitioning of
threads to cores is also supported by the operating system
(by defining thread affinities).
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Figure 7: Absolute energy consumption of generated systems.

The offline analysis presented above produces these out-
puts for a given task system:
• a partition mapping for each node of each task of the

system, i.e. how the core affinities of each HIPPEROS
thread must be defined;
• a task-to-operating point mapping ensuring that the

jobs of each task will never miss a deadline and reduc-
ing the power consumption contribution of this task as
much as possible.

This information is sufficient to generate a run-time sys-
tem which will be scheduled statically with a Partitioned
Rate Monotonic policy. Each thread of every task will then
be assigned to a core of the target platform. As soon as a
thread is chosen to be scheduled by the system, the sched-
uler sets the platform operating point to the one associated
with the thread’s task.

It is possible that threads of different tasks having dif-
ferent operating points assigned are executed concurrently
on different cores of the platform. However, as explained in
Section 2.3, the embedded platform has only global DVFS
capabilities. Therefore, only one operating point can be se-
lected at any time for all the cores of the platform. In such
scenario, the operating system scheduler always chooses the
operating point having the maximum frequency, ensuring
therefore that the requirements of the highest demanding
task are satisfied. We assumed that there was no “speed
anomalies”, i.e. increasing the operating frequency does not
increase the execution time of any task. This was the case
in the execution time measures of the experiments’ usecases
in Section 4.2. We expect that this holds in most practical
cases, and if not, the system designer must be warned by
some static analysis tool. Therefore, any thread receiving
an operating point greater than the one associated to its
task will meet its timing requirements.

The operating point switching time can last up to 60 mi-
croseconds on our experimental platform. Due to the size of
our use case, we chose to neglect those (as we did for the pre-
emption time and scheduling overheads). These parameters
could be integrated in the worst-case execution time anal-
ysis for a more precise study. In practice, operating point
switches only affect the scheduling core.

7. SYSTEM EXPERIMENTS

7.1 Methodology overview



We implemented a complete experimental flow. The idea
is to be able to evaluate the overall energy consumption of
task systems under a range of degrees of parallelism. By
implementing the algorithms and policies presented is Sec-
tion 6, we expect to save more energy when increasing the
degree of parallelism of the user tasks (i.e. the number of
nodes in the parallel stage). This would confirm the intu-
ition of the preliminary study of Section 4.

This experimental flow is composed of the following steps:
• Randomly generating a set of task systems. We

generated 232 schedulable task systems with varying
total utilisation (from 0.6 to 2.9), each composed of 5
independent tasks1 mapped to the use cases presented
in Section 3.2.
• Determining operating points and thread parti-

tioning. For each possible degree of parallelism (from
1 to 4), all the systems generated at the previous step
are analysed through a program implementing the flow
represented by Figure 6 and running offline on a per-
sonal computer. For each task of the input system, this
step chooses an appropriate operating point and pro-
duces a partition mapping for each thread of the task.
This step can fail on generated systems that do not
meet the schedulability conditions of the heuristic in
any configuration. In this case, new systems are gener-
ated as in the previous step until schedulable systems
are found.
• Configuring the HIPPEROS applications. The

information produced by the previous step is used to
configure HIPPEROS applications that faithfully re-
produce the generated task systems and the result of
their offline optimisation produced by the heuristic.
For each generated task system, 4 HIPPEROS appli-
cations are produced, each corresponding to a possible
degree of parallelism.
• Deploying and measuring the HIPPEROS ap-

plications. Each build generated at the previous step
has been validated by the schedulability test and can
then be tested on the real platform. An image is pro-
duced, containing the components of the system and
the use cases code. Then it is deployed on the Sabre-
Lite board and the measures are recorded by the oscil-
loscope. With these records, the energy consumption
of each build can be computed over a fixed period of
time (12 seconds, corresponding to a multiple of the
hyperperiod of all the generated systems).

7.2 Results & Discussion
The first thing to notice is that the high utilisation systems

are under-represented in the set of generated schedulable
systems. We choose to generate systems of total utilisation
up to 2.9 to maximise the scheduling opportunities. In a
partitioned schedule, systems with utilisation greater than
0.7 per core are unlikely to be schedulable. Recall that we
ran our experiments on a platform with 4 cores. The scarcity
of schedulable systems at high utilisation is to be expected
considering the limitations of the scheduling technique we
used in the paper (which is based on a partitioned rate-
monotonic analysis).

For the discussion about energy savings, we only consid-

1We chose the number of tasks for this paper arbitrarily.
Indeed, we observed similar results in energy savings for
larger task sets.
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Figure 8: Relative energy savings of parallel systems w.r.t. their
sequential equivalent.

ered systems that present a schedulable solution for every
degree of parallelism. Figure 7 shows the average absolute
energy consumption (in Joules) and Figure 8 shows the av-
erage energy savings of the multi-threaded solutions relative
to their sequential equivalent.

Regardless of the selected degree of parallelism, Figure 7
shows that the higher the system utilisation is, the higher
energy it will drain from the power supply. This can be
explained for two reasons: first, an under-utilized system
will not tend to require a high frequency, and therefore the
dynamic part of the program will drain less power; secondly,
low utilisation systems will remain in idle mode most of time,
which is a state handled by the kernel and the underlying
platform and therefore easy to optimize and setup for low-
power.

Figure 8 shows that parallelism is clearly a good option
to reduce the energy consumption of low utilisation systems.
In the best cases, the average relative factor can be as low as
77%. The maximum standard deviation in computed energy
savings for each system utilisation value was no greater than
0.13. We see that the maximum degree of parallelism (the
one that uses all the cores) is also the one which dominates
in terms of energy savings. This is expected because using
all the cores with all the threads leads to a high speedup
(near to 4 for our use cases) and to a better distribution of
the workload among cores. More generally, until a certain
threshold of utilisation value, we can see the following ten-
dency: the higher the degree of parallelism, the better the
energy savings.

However, we see a limit in this tendency when the utili-
sation increases. This can be caused by two reasons. The
first reason is that in this data, the only systems that are
represented are those that are schedulable for all degrees
of parallelism, including the sequential ones. However, a
schedulable mono-thread system with a high system utilisa-
tion is already well distributed across the cores of the plat-
form, and there is not much that parallelism can do to im-
prove this situation. Moreover, these charts do not show the
fact that a system which is not schedulable in his sequential
version could be schedulable in its parallel version. Energy
savings apart, multi-threading potentially bring also better
schedulability ratio (with the application of right policies).
The second reason is that the scheduling analysis used in this
work introduces a higher pessimism when increasing the de-
gree of parallelism. This forces the optimization procedure



to adopt higher operating points for the parallel systems,
resulting in less energy gains. Still, good energy savings for
low-to-middle total utilisation gives good opportunity to re-
duce the energy consumption of industry systems that are
usually over-provisioned (and result in low system load).

More precisely, we see that configurations with 3 threads
seem to degenerate for some utilisation values. This can be
explained because of the number of cores of the platform. As
there are 4 cores, a setting with tasks with 3 threads leads to
an unbalanced use of the platform and a loss of synchronicity
for OpenMP threads. This is not energy efficient.

Notice that all the systems that are part of the data plot-
ted on the charts have been passed as schedulable by the
offline analysis and that this was confirmed at run-time as
the HIPPEROS RTOS (which natively supports real-time
workloads) didn’t detect any deadline miss (for at least an
execution lasting more than one hyperperiod). Therefore
in the context of our work hypotheses made on timings ap-
peared to hold and the system did not suffer too much from
task interferences and implicit resource sharing.

Finally, note that the techniques used in this paper only
focus on the power consumption of the processor (by chang-
ing its voltage and frequency), but the measurements were
done directly on the power supply of the whole system.
There is a large (and constant) contribution to the system
power consumption that has nothing to do with the proces-
sor. Therefore, the relative energy savings on the processor
alone are likely to be somewhat greater than those shown in
our data.

7.3 Flaw in schedulability test
As mentioned in Section 6.2, the schedulability test of

Axer et al. [2] used to discard solutions (partitioning and
operating point assignments to the generated systems) be-
fore running the experiments was found to be flawed.

After careful analysis, we found that this flaw causes the
analysis to be optimistic, accepting certain systems that are
actually not schedulable. We consider that this flaw did not
impact the results presented in Section 7.2.

Indeed, our paper discusses the energy savings that can be
achieved through the use of parallel tasks on a real platform,
not tied to any specific schedulability test. The (flawed)
schedulability test was primarily used to make large scale
experiments by discarding unschedulable systems quickly.

It is important to notice the following:
• only (randomly generated) systems schedulable accord-

ing to the flawed analysis were executed at run-time
on HIPPEROS ;
• we executed all theses systems on the RTOS with ex-

ecution budget and deadline checking activated for a
period of time at least longer than their hyper-period;
• all these systems met their deadlines at run-time.

Considering this, we only ran systems that both returned
schedulable by the (flawed) analysis and didn’t miss any
deadline at run-time. To impact our energy saving results,
the test had to mark systems as schedulable and those sys-
tems would need to miss deadlines when executed in prac-
tice. This was not the case in our experiments.

If we hadn’t used a schedulability test and ran all gen-
erated systems on the RTOS directly, discarding systems
with detected deadline misses, the results and contributions
of our submission would have been the same (while the ex-
periment would have taken more time by several orders of

magnitude).

8. RELATED WORK
This paper introduces the usage of power-aware paral-

lelism in a practical and implementable scenario, using an
existing real-time operating system and an embedded multi-
core platform. To the best of our knowledge, currently no
other research has simultaneously addressed realistic and
practical energy-aware and low-power parallel real-time com-
puting with operating system support. However, these top-
ics have been treated separately in the literature.

Practical Fork-join parallelism. Wang and Parmer
addressed the problem of real-time fork-join parallelism in
practice [14], with a focus on the timing overheads of their
implementation in the Composite real-time kernel. Ferry et
al. [5] designed and implemented RT-OpenMP, a platform
for supporting OpenMP in real-time systems based on these
results, and made an experimental assessment of their im-
plementation on hardware.

Energy-aware real-time computing. Numerous the-
oretical works have been produced on energy-aware
real-time systems. Most of these works involve uni-core or
multi-core systems with a sequential model of execution.
However, some consider a parallel model of execution, e.g.:
Zhu et al. designed graph-task power-aware scheduling tech-
niques [15]; Kong et al. considered the scheduling of parallel
tasks with a single, global deadline (frame-based task sys-
tems) [8]; Chen et al. provided techniques that combine
DVFS and Dynamic Power Management (DPM, which con-
sists in individually switching on and off the cores of the pl-
atform) for dependent tasks (a model close to OpenMP) [3];
Paolillo et al. evaluated the potential benefits of parallelisa-
tion over sequential systems through theoretical simulations
of a malleable task model [11]. However, most of these works
lack an experimental evaluation of the energy savings of the
proposed techniques on real-world hardware. Moreover, of-
ten very few concerns are raised about the implementation
of operating system support for these techniques.

Parallel real-time scheduling theory. For this work,
we chose to restrict ourselves to partitioned and periodic
fixed priority scheduling policies. Other works considered
the partitioned fixed priority scheduling of more generic par-
allel tasks [12], based on a task decomposition technique and
a sporadic schedulability test [6], however this approach re-
sulted in excessive pessimism when coupled with the restric-
tive task model and technical limitations of our experimental
setup. Courbin et al. [4] investigated a number of scheduling
and partitioning techniques for parallel tasks, also based on
task decomposition.

Model precision. With regards to existing works, this
paper also uses a more general model of power consump-
tion and execution time than what is generally considered
in the literature [1, 2, 4, 5, 9, 12]. Usually it is assumed that
the relation between frequency and execution time is simply
inverse, but also that introducing intra-task parallelism and
multi-core execution results in perfect speedup.

9. FUTURE WORK
Potential extensions to this work on energy-aware real-

time computing would use more advanced software tech-
niques like global multi-core scheduling, EDF policies and
combine DPM with DVFS. In particular, to extend the ex-



periments to the explicit use of DPM and DVFS in a dy-
namic manner while a parallel task is executing. There is
no obvious domination of DVFS versus DPM in terms of
energy consumption and it would be worthwhile to explore
their effectiveness depending on platform characteristics.

We would also like to try and combine different optimisa-
tion heuristics and schedulability tests that would improve
the energy savings. Indeed the schedulability test used in
this paper carries significant pessimism that artificially pe-
nalised parallel tasks.

Parallelisation techniques can also be at extra-cores level,
by using reconfigurable hardware (i.e. FPGA) and model it
as a resource in a real-time framework.

The experiments could be extended to more varied use
cases, using more complex features present in real embed-
ded applications such as I/O, inter-process communications
and synchronisation primitives. CPU frequency has a lesser
impact on a I/O-heavy process and therefore could be low-
ered further at little cost in performance. We could also add
complexity in the parallel task model, by allowing several
parallel stages in the task, both in sequence or nested.

Finally, we could also evaluate the impacts and benefits
of parallelisation and multi-threaded scheduling on the sys-
tem temperature, which would be an additional metric to
consider alongside energy consumption.

All these techniques would be implementable and evalu-
ated with an existing RTOS.

10. CONCLUSIONS
In this paper we presented a complete experimental frame-

work able to measure the energy consumption of a physical
board with a multi-core processor when running randomly
generated real-time task sets from a set of use case programs.
We used this framework to demonstrate the impact of intro-
ducing intra-task parallelism on the energy consumption of
the system for a given workload and timing constraints. Our
results suggests that with the specific techniques used, ene-
rgy savings up to 30% might be realised, depending on the
load of the system and the profile of the programs.

Another contribution of this paper is to confront practical
evaluations on a real embedded platform with techniques
and idea usually exploited in the theoretical literature with
such as the actual effects of frequency/parallelism scaling on
the execution time of cpu-/memory-bounded programs.

The practicality of the approach must be questioned with
the feasibility of implementing multi-threaded applications
on real world real-time systems with good speedup. This
can be proved to be challenging as usually industry designers
prefer to avoid complexity by implementing very simple (and
sequential) programs. However, standard API like OpenMP
bring an abstraction layer to simplify the design of parallel
applications. Therefore by exploiting parallelism, our work
shows practical benefits in terms of energy savings with the
use of easy-to-apply low-power operating system techniques.

However, our results also show the limitations in terms
of energy savings of the use of pessimistic schedulability
test. In order to leverage the full capabilities of multi-core
hardware platforms and reduce their energy consumption as
much as possible, real-time operating systems needs to im-
plement more precise and validated policies. This requires
the development of novel theoretical techniques.
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APPENDIX
A. METHODOLOGY DETAILS

In this appendix we explain the details of our experi-
ment testbed and how we implemented the whole flow of
our methodology.

A.1 Platform operating points determination
As the documentation of the i.MX6q processor platform

is really succinct about what are the supported operating
points, we decided to find them out by running some bench-
marks. We executed in parallel on the 4 cores of the plat-
form a CPU-intensive, fault-sensitive task. For each possi-
ble voltage value, we executed this workload at higher and
higher frequencies until the system became unstable. Then,
we lowered the frequency and attributed it to this voltage
value. This empirical method allows to generate the ope-
rating points (Vdd, f) with the highest viable frequency value
for each voltage value (minimising then the individual power
consumption of each operating point as depicted by Equa-
tion 1). The operating points selected for our experiments
are shown in Table 1.

A.2 Random task sets generation
To imitate a wide range of applications, a random gener-

ation technique was used.
The utilisation of each task was generated using the effi-

cient technique of Emberson, Stafford and Davis [16, 17] to
generate multi-core systems that are uniformly-distributed.
This technique allows to generate individual task utilisations
with a given number of tasks and a fixed total utilisation (the
sum of the utilisation of all the tasks of the system).

All the systems we evaluated in our experiments were com-
posed of 5 periodic tasks. We generated systems with total
utilisation varying from 0.6 to 2.9 (we deployed our applica-
tions on a platform with 4 cores) by step of 0.1. For each of
these total utilisation values we generated 10 random sys-
tems, resulting in a total of 240 generated task systems to
analyse. Each individual task utilisation was comprised be-
tween 0.1 and 1.0.

Each individual utilisation value of a generated system
was randomly matched to one of our three actual use cases
(introduced in Section 3.2) to be run on the RTOS.

The period of each task was generated by picking a value
uniformly from the set {2, 3, 4, 6, 12} (these values are ex-
pressed in seconds). This set of period values ensures that
the maximum possible hyper-period for any generated task
set would be 12 seconds and therefore limits the amount of
necessary voltage measures and bound the time to experi-
mentally evaluate a system on the actual platform.

Notice that the generated utilisation are defined as refer-
ence utilisation values for a fixed operating point (the lowest
one) and a sequential model of execution (i.e. the number
of nodes of the parallel stage is fixed to 1). Any other choice
for these parameters impacts the actual utilisation as this
choice modifies the execution time of the executed task.

Randomly generating individual utilisation and period val-
ues for every task of a system constraint the execution time
to a fixed value, as ui = Ci

Pi
. We explained how we man-

aged to fix the execution time of our use cases in the next
sub-section.

A.3 Execution time measurements

A worst case execution time bound for each use case pre-
sented in Section 3.2 is evaluated empirically.

The optimisation procedure that fixes the degree of free-
dom of our analysis (introduced in Section 6.1) requires,
for each use case, a matrix of Worst Case Execution Times
(WCETs), as represented by the plot in Figure 4a. This
matrix must provide a WCET bound for a given operating
point and a chosen number of nodes for the parallel stage
(i.e. the chosen parallelism degree). More specifically, a
bound must be provided for each stage of the use case (se-
quential, parallel, sequential; see Section 5.1).

For the purpose of our experiments, for each use case and
for each possible combination of operating point (there are
9, see Table 1) and number of nodes in the parallel stage
(from 1 to 4), we ran an HIPPEROS system with a single
task to execute and we measured the execution time of each
stage (as required by the schedulability evaluation procedure
defined in Section 6.2).

In order to avoid to introduce non-determinism in the exe-
cution time of the use cases, the data processed by those are
fixed at compile-time. However, we ran this experiment sev-
eral times to aggregate the results and avoid non-determinist
timing effects (e.g. cache effects, kernel overheads) and these
WCET bounds are over-provisioned by a 10% factor to avoid
any time budget overflow in the execution of the real task
systems.

This simple empirical approach to WCET evaluations does
not intend to replace a complex WCET analysis framework
with the appropriate tools but is sufficient for the purpose of
the experiments of this paper (as our goal is not to provide
techniques nor tools to determine the WCET of parallel pro-
grams). In the context of our experiments, this was sufficient
as the running RTOS did not detect any WCET overflow of
the jobs at run-time.

As the periods and the reference utilisation values of the
tasks are generated randomly, the reference WCET must be
fixed (WCET when the selected operating point is the lowest
and when no degree of parallelism is allowed). To this aim,
we introduced in the code of all the use cases an execution
time factor in order to be able to artificially increase linearly
the workload to execute and therefore to (almost) linearly
increase its WCET bound. This factor allows that ui =
Ci
Pi

holds (approximately) for any generated utilisation and

period values. Therefore, the WCET measures are executed
for the least possible WCET factor (= 1).

A.4 Power optimisation step
At this step of the evaluations, we have a set of task sys-

tems composed of tasks, each having an associated use case,
period, a utilisation value and a WCET matrix. We imple-
mented the optimisation heuristic, the partitioner and the
schedulability test (explained in Section 6 and illustrated
by Figure 6) as a Python program. The program takes as
input a task system and a chosen degree of parallelism (a
number between 1 and 4) and selects an operating point for
each task of the system. This selection is made in order to
guarantee system schedulability while trying to minimize the
overall energy consumption (by selecting the lowest possible
operating points).

If the program found a schedulable solution, it produces as
output a system configuration that defines how the HIPPEROS
tasks and threads must be configured to represent the gen-
erated system. For each task, this configuration defines the



selected operating point and to which core to assign every
thread of the task. This information is used to produce the
actual HIPPEROS build.

If the program did not found any schedulable solution
for any selection of the operating points, it produces a null
system. Then no HIPPEROS build is generated.

On each generated task system, we run the heuristic for
all possible parallelism degree. Therefore, for each system,
there are 4 HIPPEROS builds generated, one for each al-
lowed parallelism degree. Systems having a degree of par-
allelism proven to be unschedulable are simply discarded.
Notice that when the degree of parallelism is set to 1, the
system is equivalent to the sequential case.

A.5 Systems deployment on the RTOS
The system configurations generated at the previous step

are supposed to be schedulable from the analysis. The out-
put of the heuristic is then used to generate a HIPPEROS
application package. The application containing the code
of the use cases together with the tasks’ configuration, the
HOMPRTL software and the HIPPEROS kernel are then
deployed on the SabreLite MPSoC platform to validate our
theoretical framework in a practical setting.

The application is executed for a period of time equal to
a multiple of the system hyper-period (12 seconds). The
kernel releases the periodic parallel jobs corresponding to
the configured tasks while the oscilloscope records voltage
measurements on the hardware platform.

This allows us to compare the measurements done for the
same system executed with different parallelism degree. An
external script checks that no WCET overflow or no deadline
miss occurs (to validate the schedulability analysis).

A.6 Power measurements
As explained earlier in this section, voltage values are mea-

sured and recorded with the oscilloscope on the boundaries
of a 1 Ω resistor. The power supply provides a 5V voltage
potential. The circuit is illustrated by Figure 2. If Vh is
the voltage drained by the SabreLite platform (running the
HIPPEROS system), Vr the voltage measured at the resis-
tor boundaries by the oscilloscope, R is the resistor value,
I the current in the circuit and Ph the power consumed by
the HIPPEROS system, then simple electricity laws imply:

Vh = 5V − Vr, Vr = RI ⇒ Ph = VhI = (5V − Vr)
Vr
R
,

and we know R = 1 Ω, then we obtain the power consumed
by the board at any time by applying P (v) = (5−v)v on any
voltage measure v (i.e. as shown in Figure 3). The overall
energy consumption is computed over a time of a multiple
of one hyper-period (12 seconds) and is obtained by approx-
imating the integral of the power over time, i.e. by summing
all power measures (taken between system boot and the mul-
tiple of the first hyper-period) and multiplying them by the
constant time interval between two measures. Let H be the
system hyper-period, EH is the energy consumed over this
hyper-period of time. vi is the set of all voltage measures
of the oscilloscope around the resistor boundaries separated
by a small constant interval of time ∆t, then

EH =

∫
H

P (v(t))dt ' ∆t
∑
i

(5− vi)vi.
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