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ABSTRACT
Feature detection is a major operation in various computer vision
systems. The KAZE algorithm and its improved version, Accelerated-
KAZE (AKAZE), are considered as the first algorithms to detect fea-
tures by building a scale space using nonlinear diffusion. However,
the detection part of the algorithm achieves only 6 fps on an Intel
Core i7-4790 processor for an image resolution of 1024x768. This
work proposes a pipelined architecture for a hardware accelerator
that performs the AKAZE detection algorithm. Firstly, modifica-
tions are done to the original algorithm to reduce the amount of
computations and memory accesses. Then, the accelerator is im-
plemented on a Xilinx Zynq SoC and achieves 98 fps for the same
resolution and a frequency of 100 MHz. Compared to the original
algorithm, the design has an error in average inliers ratio by only
4%.
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1 INTRODUCTION AND MOTIVATION
Detecting features in an image is considered as a fundamental step
in many computer vision applications such as object recognition,
image registration and motion tracking [14]. There are two basic
criteria for choosing a detection algorithm. The first criterion is the
ability of the algorithm to be used in widely varying applications,
while the second one is the repeatability of the algorithm [14].
Repeatability is defined as the ability of detecting the same feature
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in different locations invariantly to rotation, scale, and change in
brightness or contrast.

KAZE and accelerated KAZE (AKAZE), introduced in [4] and
[16] respectively, are the first algorithms to use the non-linear
diffusion in multi-scale feature detection. Other approaches use
linear diffusion to create the scale-space. According to Alcantarilla
et al. [16], both KAZE and AKAZE show better repeatability and
performance than other algorithms such as ORB [19], BRISK [12],
SIFT [13] and SURF [5].

The main problem with AKAZE is the computation intensive-
ness. For an image of resolution of 1024x768, we measure that the
detection part of the original algorithm achieves only 6 fps in aver-
age on an Intel Core i7-4790 processor. In order to achieve higher
frame rates and meet real-time requirements, this paper introduces
a hardware acceleration of the detection part of the AKAZE algo-
rithm. Additionally, the detected features (or keypoints) are sent to
the FREAK descriptor [3], which is processed in software and used
instead of the MLDB descriptor of AKAZE. The FREAK descriptor
is faster to compute and has a much lower memory load.

The paper is organized as follows: Section 3 shows a brief descrip-
tion of the AKAZE detection algorithm. Section 4 introduces the
modifications done on the original algorithm. A detailed hardware
implementation is described in section 5. In Section 6, the perfor-
mance of the design and the hardware utilization are represented.
Section 7 concludes this work and gives an outlook.

2 STATE OF THE ART
Various algorithms are introduced to detect image features in multi-
scale framework. SIFT [13] and SURF [5] are the most widely used
detectors in computer vision. Both are using the Gaussian (linear)
diffusion to build the scale-space. Other algorithms, such as FAST
[18], ORB [19] and BRISK [12], are proposed to reduce the cost of
heavy computations. Meanwhile, all these algorithms, in addition
to AKAZE, are not applicable for high frame rate especially for
high resolution images. Hardware implementations are designed
to accelerate those algorithms. A throughput of 30 fps is obtained
using SIFT and SURF for VGA resolution (640x480) [7–9, 15]. An
architecture based on ORB is designed in [11] producing 55 fps for
VGA resolution. The highest throughput achieved is 127 fps for full
HD images using optimized AKAZE algorithm [10]. One missing
part in this paper is the computation of the contrast factor, which
is essential in building the non-linear scale-space. Furthermore, the
hardware testing methodology of this paper is very vague.

3 AKAZE FEATURE DETECTION
The AKAZE detection algorithm consists of 3 parts: computing the
contrast factor, building the non-linear scale-space and detecting
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Figure 1: Block diagram of the complete system

features. They are shown in the lower part of Figure 1. This section
gives a summarized introduction to the different parts.

3.1 Computing the Contrast Factor
The contrast factor is significantly important in building the non-
linear scale-space. Firstly, the image is smoothed by a Gaussian filter.
Second step is to calculate the maximum absolute gradient value of
the smoothed image, called hmax. This is done by looping on the
whole image, calculating the absolute value of the gradient of each
pixel. Third step is to fill a histogram of 300 bins with the gradient
values divided by the parameter hmax. The following step is to loop
on the histogram to find the histogram index i at which the 70%
percentile of the gradient histogram is achieved. The contrast factor
can then be calculated by:

k =
hmax · i

300
(1)

3.2 Building the Nonlinear Scale-Space
The scale-space levels are built by numerically solving the par-
tial differential equation (Eq. 2) iteratively using the Fast Explicit
Diffusion scheme (FED) with varying time steps τ i (Eq. 3).

∂L

∂t
= div(д(|∇Lσ |) · ∇L) (2)

Lj+1 = (I + τjA(L
j ))Lj (3)

The function д(|∇Lσ |) is called the conductivity function (or
flow function) and A(L) is the matrix notation of this function. The
conductivity function is chosen to be:

д(|∇σ |) =
1

1 + |∇Lσ |2

k2

=
k2

k2 + |∇Lσ |2
(4)

where k is the contrast factor. To prevent using two division
operations, Eq. 4 has been adjusted. For each pixel, computing the
conductivity function (Eq. 4) requires 1 division, 2 multiplication
and 2 addition operations. Additionally, each FED step (Eq. 3) needs
5 multiplication and 12 add/subtract operations for each pixel. That
is whatmakes AKAZE computationally intensive and, consequently,

Figure 2: Scale-space representation in AKAZE (3 octaves, 4
sub-levels)

time consuming. The scale-space in AKAZE (see Figure 2) is a pyra-
midal framework. It consists of octaves and each octave consists of
sub-levels. Each octave is quarter the size of the previous.

3.3 Feature Detector
AKAZE uses the determinant of the Hessian (DoH) blob-detector.
After building the non-linear scale-space, DoH images are computed
at increasing scale sizes as the sub-levels increases. That is why
AKAZE down-samples the images after certain sub-levels.

The keypoints (or features) are extracted by comparing the pixels
in DoH images with a surrounding window of size 3x3. If the value
of this pixel is greater than the other 8 surrounding pixels and a pre-
defined threshold, the pixel is compared spatially with keypoints in
the same sub-level in a window of radius σ 2 to exclude the repeated
keypoints that exist inside the same circle. The same comparison
is made with the upper and lower level and the radius depends on
the sub-level.

4 MODIFIED DESIGN
Four major modifications are made to the original implementation
to reduce computations, memory access and array comparisons.

4.1 Fixed Point Implementation
The original algorithm is implemented in software using 32-bit
floating point numbers. The implementation of floating point calcu-
lations is very costly in terms of hardware resources. So, the whole
implementation of AKAZE is retyped to fixed point representation.
To keep the same accuracy, all produced images, such as derivative,
flow and smoothed images, are in 16-bit format except for the DoH
images that are in 32-bit format.

4.2 Computing the Contrast Factor
The parameter hmax is used two times: the first time is when nor-
malizing the gradient values to be fit into 300 bin histogram and
another time to be multiplied by the ratio i/300 as in (Eq. 1). From
measurements with different image and random input data, it is
found that hmax does not exceed the value 0.5. The original imple-
mentation requires looping the whole image twice, one to find hmax
and another to fill the histogram. Instead, in the modified design
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the image is looped only once. This can be done by normalizing the
gradient values to 0.5 instead of hmax The histogram length is not
more than 300 bins and can take any arbitrary length. So, a new
parameter nbinmax, which indicates the maximum length that is
achieved, is taken into consideration. Now, only one loop is needed
to fill the histogram with the new normalized gradient values and
to calculate nbinmax and hmax for the next step. The next step is to
compute the contrast factor by (Eq. 5).

k =
hmax · i

nbinmax
(5)

This new method doubles the speed of computing the contrast
factor and reduces the memory access by half. Another change is to
approximate the square root operation, for computing the gradient,
into one division, one multiplication and one summation, as in (Eq.
6), where Lmax and Lmin are the maximum and minimum values
of the first derivatives Lx and Ly respectively.

∇L
√
L2x + L

2
y ≈ |Lmax | +

1
2
Lmin · Lmin

|Lmax |
(6)

Additionally, the contrast factor is redefined to be 68.75% per-
centile instead of 70%. This replaces multiplication by 0.7 to be
multiplication by 0.6875, or in other words multiplication by (1/2+
1/8 + 1/16), which can be achieved by adding and shifting instead
of multiplying.

4.3 Keypoint Comparison
Each detected keypoint in AKAZE is compared to all other key-
points in the keypoint buffer, to avoid replication of neighboring
keypoints. This method has a complexity of O(n2) for n keypoints,
whichmakes it very computationally intensive. Themodified design
takes the advantage that the keypoints are detected in ascending
order with respect to the vertical position. So, adaptive searching
pointers are used to determine the beginning and ending of the
keypoints to be compared in the buffer. This adaptive searching
decreases the complexity dramatically from O(n2) to be approxi-
matelyO(n ·loд(n)). If the keypoints are only compared to the lower
and the same level, the number of matches differs by about 1%. So,
comparing with the upper level is excluded.

4.4 FREAK Descriptor
Fast Retina Keypoint (FREAK) is a descriptor that is inspired by
the human visual system and more precisely the retina [3]. In our
experiments, we have compared the MLDB descriptor of AKAZE
with other descriptors, like BRIEF [6], BRISK or FREAK. The FREAK
descriptor is in general faster to compute and has a lower memory
load and is more robust than the other algorithms. The greatest
advantage over the MLDB descriptor is the low memory load. Since
the MLDB descriptor needs the computed images and derivatives
of all levels in scale-space to be stored into memory, which is crit-
ical in an embedded system with limited memory resources and
bandwidth. Our software tests have shown that the FREAK descrip-
tor achieves comparable or better results than other descriptors in
terms of correct matches for AKAZE.

Figure 3: Block diagram of 5x5 window generator

Figure 4: Block diagramof 5x5window generator (replicated
borders)

5 HARDWARE IMPLEMENTATION
This section describes different hardware blocks used to build the
AKAZE accelerator on an FPGA, in addition to the software used
to test the accelerator.

5.1 System Overview
The system consists of three parts (see Figure 1) PC platform, ARM
processor and the hardware accelerator. Both ARM and accelerator
are embedded into the Zynq-7000 chip on the ZedBoard [2]. The
PC platform contains the software that reads the images, sends
them to the ARM via Ethernet and then receives the keypoints. It
also contains the description and matching parts that use these
keypoints to test the system.

The accelerator has two pipelined stages: stage 1 computes the
contrast factor and stage 2 builds the non-linear scale space and
detects the keypoints. The ARM sends an image (first frame) to
stage 1, and when it finishes, it sends an interrupt to the ARM to
send the same image to stage 2. The contrast factor of an image is
computed only once for a frame. Stage 2 has two outputs that are
saved in memory: the keypoints of the first octave and the resized
image for the following octave. When stage 2 finishes, it sends
an interrupt to the ARM to send the resized image back from the
memory to stage 2 to detect the keypoints for the second octave.
This process is repeated until all keypoints of different octaves are
sent to the ARM. While stage 2 is working on the first frame, stage
1 computes the contrast factor for the second frame. So, both stages
are working simultaneously but for different frames.
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Figure 5: Block diagram of stage 1 of the accelerator

5.2 Window Generator
Most modules in the implemented hardware design must scan the
whole image and use a specific number of pixels as a window to
generate its result. The implemented modules use different window
sizes ranging from 3x3 to 17x17. An extended architecture of the
window generator, like the one proposed in [17], is used. The win-
dow generator (see Figure 3) consists of pixels buffer (on the right)
of shift registers and row buffer (on the left), built with BRAM. The
output of the window generator is the content of the pixels buffer.
In the extended design (see Figure 4), some multiplexers are added
to the pixels buffer to support horizontal and vertical replicated
borders. The extended design also supports variable image widths
to be used by different octaves.

5.3 Mathematical Operations
In the AKAZE hardware design, there are five mathematical op-
erations that use the output of the window generator: Gaussian,
Scharr derivative, conductivity function, FED and determinant of
Hessian. Each function of them uses a different size of the window
generator according to the kernel size and the scale.

5.4 Contrast Factor
A block diagram of computing the contrast factor is shown in Figure
5. The histogram is a simple dual port BRAM (A for writing and
B for reading) of length 1024. The histogram controller is a Finite
State Machine (FSM) that has three states: filling histogram, reading
histogram and halt. For the first state, the controller enables writing
and sets both addresses A and B to the index value nbin so that
the value at address nbin is incremented by one. In the second
state, the controller reads the histogram values (through address B)
starting from the first index until 68.75% percentile of the gradient
histogram is achieved. Then, the contrast factor is calculated by
(Eq. 5), where i = AddrB.

Figure 6: Non-linear scale-space generation

5.5 Non-Linear Scale-Space
The hardware is designed for building 4 sub-levels per octave. Each
sub-level is generated by a "NL Scale-Space" block. This block con-
sists of (Figure 6): Gaussian Filter, conductivity function generator
and a number of FED steps. Because the pixel stream of the flow
image (generated by the conductivity filter) and the original image
must be presented simultaneously, a FIFO is needed before the first
FED step to compensate the delay of the window generator of the
Gaussian and conductivity filters. The number of FED steps varies
according to the sub-level and octave. In sub-level 0 for octave 0,
there are no FED steps. So, this sub-level is built by only a Gaussian
filter with window size 7x7 to remove the noise of the original im-
age. Therefore, multiplexers are used in octave 0 to choose between
this Gaussian filter and the normal "NL Scale-Space step 0" block.

5.6 Keypoint Detector
The DoH filter is applied on each input image with a different scale,
which depends on the sub-level (Figure 7). Taking the advantage of
the linearity property of the convolution process, the second order
derivatives can be computed using the second order derivative
kernel without computing the first order derivative images. The
second order derivative kernel is calculated by convoluting the
two derivative kernels. If more than one keypoint is present at the
same time from different "local extrema" blocks, the multiplexer
chooses the keypoint with the lower sub-level first. New keypoints
are compared to the keypoints stored in the buffer by the adaptive
search pointers. The keypoint is a 64-bit vector, which contains
the x and y position, the sub-level number and the response value
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Figure 7: Block diagram of the keypoints detector

(DoH value). According to the measurements, the buffer length is
set to a maximum of 8192 keypoints.

6 RESULTS
6.1 Detection Repeatability
A set of 48 images is used to test the repeatability of the system.
The images are in grey-scale and differs in blurring, viewpoint,
rotation, brightness, JPEG compression and noise added. They are
taken from the Oxford Visual Geometry Group datasets [1] and the
"iguazu" dataset presented by Alcantarilla et al. [16]. The original
implementation of Alcantarilla et al. [16] has been taken for com-
parison and compiled using the O2 optimization flag. The different
configuration flags only differ in the contrast factor as described in
section 4.2.

Figure 8 shows a comparison between the original algorithm
and the modified one for the mentioned datasets with respect to
the inliers ratio. That is, the ratio between correct matches to to-
tal matches. Generally, our modified algorithm shows the same
behavior as the original one for different images. The original algo-
rithm gives 76% average inliers ratio and ours gives 73% for the test
datasets. Consequently, an error of only 4% in the average inliers
ratio is present. The reduced ratio in some datasets is mainly due to
the omitted sub-pixel refinement when using the FREAK descriptor,
which can be added without increasing the computation time.

6.2 System Throughput and Resources
The hardware is synthesized and implemented using Xilinx Vivado
2016.4 and the ZedBoard [5] as the evaluation and development
board. The implemented design gives a maximum operating fre-
quency of 100 MHz. The throughput of the design depends on the
size of the input frame. Eq. 7 is used to calculate the time of the
system:

Ttot =
4
3
W (H + n)(1 − 4−o )/f req (7)

Where W is the image width, H is the image height, O is the
number of octaves and n is a factor representing the initial delay
required to fill the row buffers in the window generators. The
parameter n is estimated to be 4 for stage 1 and 25 for stage 2 (Figure
1). By measuring the computation time of the accelerator using the
ARM processor, it is found that (Eq. 7) is completely accurate. In
our system, we are using an image resolution of 1024x768 and 2
octaves. Stage 2 determines the overall computation time, since O

Figure 8: Inliers ratio for different image sets

is only 1 in stage 1. So, the accelerator needs a total time of 10.15
ms or 98 fps.

Table 1 shows resource utilization for basic building blocks and
the overall system as given by the implementation tool. The results
show that it is possible to fit AKAZE feature detection algorithm
on a low-cost FPGA board for embedded systems, with remaining
resources for light weighted a descriptor like FREAK.

7 CONCLUSION AND FUTUREWORK
This paper introduces a real-time hardware implementation for the
AKAZE detection algorithm. The design consists of two parallel
stages embedded on an FPGA connected with an ARM processor.
The system is evaluated and tested on a ZedBoard and runs on a
frequency of 100 MHz. For a resolution of 1024x768, the system
gives a throughput of 98 fps while keeping the same accuracy as the
original algorithm implemented on software. In future work, the
FREAK descriptor can be implemented in hardware and integrated
in parallel to the AKAZE accelerator as a third stage. Moreover,
using the sub-pixel refinement to reallocate the keypoints shows
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Table 1: System utilization

Block FF LUT BRAM DSP

Gaussian 5x5 626 720 2 7
Gaussian 7x7 593 843 3 10
Conductivity 1248 966 1 2
FED 641 327 2 5
DoH Level 0 1829 1452 4 2
DoH Level 1 3279 1601 6 2
DoH Level 2 3279 1598 6 2
DoH Level 3 5249 1942 8 2
Local Extrema 352 365 2 0
Resize Image 175 187 0.5 0

Contrast Factor 2932 2704 4.5 13
NL Scale-Space 19806 13803 55.5 136
Keypoints Detection 15576 8438 48 8

Total System 38314 24945 108 157
(36%) (47%) (77%) (71%)

better repeatability results. The sub-pixel refinement uses the DoH
images, so this can be implemented in parallel to the local extrema
block.
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