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Abstract—The TULIPP project aims to facilitate the develop-
ment of embedded image processing systems with real-time and
low-power constraints. In this paper, several adaptive dynamic
runtime techniques for reconfigurable SoCs are described. These
methods are used for low power image processing applications on
high-performance embedded platforms. Dynamic voltage scaling
and dynamic partial reconfiguration target the low-power re-
quirements of the embedded systems while debugging supports
the fast development on the hardware side of the system. The
proposed techniques were tested and verified using an own
developed custom SDSoC image processing library.

Index Terms—Embedded systems, image processing, real-time,
reconfigurable, low power, FPGA, Dynamic Voltage Scaling,
Dynamic Partial Reconfiguration , Debugging

I. INTRODUCTION AND MOTIVATION

Image processing and their applications are a wide and
complex domain due to e.g. large data volumes, high per-
formance requirements and extensive sensor types. Moreover,
image processing itself often aims at case scenarios where
power, energy consumption, weight, physical size and costs
are important during the development phase. Designers phase
these restrictions and the challenges they represent have to
be resolved. The comprehensive purpose of the Towards
Ubiquitous Low-power Image Processing Platforms (TULIPP)
project is to lower the factor of the given challenges by
providing a complete image processing reference platform
through associated guidelines so that developers are able to
achieve their goals in embedded image processing applications
[1].

We propose two runtime techniques to achieve the low
power consumption requirement. On one hand, the Dynamic
Voltage Scaling (DVS) technique can modify the voltage
during runtime depending on the needed performance of the
application. In this paper, we discuss a software solution for
DVS and power monitoring on ZC702 development board by
running FreeRTOS and using Xilinx SDSoC. On the other
hand, Dynamic Partial Reconfiguration (DPR) modifies only
a defined region of the hardware without affecting the static
part. In this work, the EMC2-TULIPP hardware instance based
on Xilinx’s Zyng-7000 System-on-Chip (SoC) is used for the
DPR technique. This method reduces the amount of hardware
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utilization of the Field Programmable Gate Array (FPGA) and
as a consequence the static power consumption.

In this work, we used FreeRTOS to make use of the
proposed techniques to achieve real-time constraints in the
software of the Processing System (PS). Moreover, the de-
bugging system software driver is developed for FreeRTOS so
that a fast hardware validation during runtime is possible.

The paper is organized as follows: Sections II presents
related work and Section III provides background information.
Section IV discusses scheduling techniques to achieve low
power consumption. Section V shows the DPR technique and
debugging support is introduced in Section VI. Section VII
presents the results and the paper is concluded in Section VIII.

II. RELATED WORK

Dynamic voltage scaling involves changing the voltage of
the circuit in order to reduce power consumption. Lowering
the voltage of the circuit results in a decrease of the dynamic
and leakage current. Although, it also increases the gate
delay. The idea is to scale voltage as low as possible and
maintain a reliable performance of the design [2]. Many
different implementations have already been done in this field
to improve the power consumption of FPGAs. A software and
hardware method for DVS is described in [3]. A complete PL-
side setup, using MicroBlaze IP, Dual-Port RAM (DPRAM)
and I>C was defined in order to scale the voltage and perform
power monitoring. In [4], the importance of Logic Delay
Measurement Circuit (LDMC) is described. First, voltage
scaling is done and then a suitable frequency is selected on
which the system should operate. Consequently, gate delay
can be adjusted. Ishihara et al. [5] present a self-adaptive
voltage control in order to solve the problems of implementing
Dynamic Voltage and Frequency Scaling (DVFS) for low
power FPGAs. In this paper, we describe a software solution to
implement dynamic voltage scaling and power measurement
using FreeRTOS and Xilinx SDSoC on ZC702.

Current FPGAs like the Xilinx Zyng-7000 SoC offer the
possibility to reconfigure some defined area of the hardware
dynamically which is called DPR [6]. Several papers discussed
the benefits of using this technique for image processing



in real-time reconfigurable designs [7]-[10]. DPR is used
to switch between different image processing applications
during run-time by sharing the same hardware resources on
the FPGA. Therefore, the design can fit on a smaller FPGA,
which results in lower power consumption and costs. A
run-time reconfigurable MPSoC architecture for future driver
assistance systems has been developed by [9]. Their proposed
architecture is based on run-time reconfigurable hardware
accelerator engines for video processing targeting a Xilinx
Virtex-2 FPGA. In [10] a fast configuration engine is designed
and deployed in the system. The engine shows that it can
outperform the engine provided with Zynq SoC by three times.
This is due to the fact that the configuration engine for Partial
Reconfiguration (PR) is completely implemented in the Pro-
grammable Logic (PL)-side. Nunez-Yanez et al. [11] propose
a power adaptive architecture that includes DVFS, independent
from the PS-side. Moreover, the architecture supports DPR via
the PS-side. In our work, these two techniques are controlled
from the PS-side where an operating system is running and
image processing application cores are implemented as case
studies.

III. BACKGROUND

This section gives background information to TULIPP,
FreeRTOS and the images processing library, since they are
used in this work.

A. TULIPP

The main of objective of TULIPP [1] is to offer a reference
platform. The aim is a fast development of embedded image
processing applications. Several design and implementation
rules as well as interfaces between the components of the
platform are provided, so that developers are able to de-
sign a matching platform. The reference platform shown in
Figure 1 is composed of three layers: hardware architecture,
real time operating system including libraries and tool chain.
The hardware architecture is a template of the heterogeneous
computing system like the Xilinx Zynq architecture. The real
time operating system and low level libraries are designed to
meet image processing application requirements and run on the
instantiated of the hardware layer. The tool chain captures the
given application and maps it to the heterogeneous hardware.

B. FreeRTOS

FreeRTOS is a portable and open-source operating sys-
tem suited for embedded applications. It ensures real-time
requirements of an application at run-time. FreeRTOS supports
semaphores and mutex to share and synchronize resources.
A real-time scheduler allows to execute different functions
in independent threads. It also enables the execution of a
thread depending on its priority. The designer can assign a
thread with a higher priority due to hard real-time requirements
[12]. Furthermore, three type of scheduling algorithms can be
chosen from the FreeRTOS kernel. In this paper, the fixed-
priority preemptive scheduling algorithm is running with an
image processing application that executes its threads with the
same priority by using the Round-Robin policy [13].
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Fig. 1. The TULIPP reference platform

C. Image Processing Library

This work uses an image processing library to test and
verify the proposed techniques. This library has been devel-
oped and implemented in the TULIPP project [14]. We have
implemented it in C++ for SDSoC using High Level Synthesis
(HLS). It is a template-based library, which provides basic
image processing functions for streaming applications. The
library supports various data types and auto-vectorization for
different functions. The main advantages of this library are
that it is independent from the SDSoC version, it does not
require extra libraries like OpenCV and it is not dependent
on an operating system. It supports more than 21 function
of the OpenVX specification, such as Gaussian, Median or
Sepia filter. All of them take an input-stream and convert them
into an output-stream using the AXI-Stream interface. With a
common interface, different functions can be easily replaced
by using partial reconfiguration.

IV. DYNAMIC VOLTAGE SCALING TECHNIQUE WITH
FREERTOS FOR AN IMAGE PROCESSING APPLICATION

Dynamic voltage scaling is a power management technique
that controls the voltage based on the workload, fabrication
and operating condition of a system [3]. During the devel-
opment stage of an application, it is required to optimize
the power dissipation of the hardware and improve the per-
formance of the HW/SW-Codesign. This dissipation can be
changed through appropriate DVS-technique at runtime. Xilinx
Zynqg-7000 SoC ZC702 (EK-Z7-ZC702-G) provides suitable
hardware components to measure and control the power dy-
namically. The SoC communicates with the power controller
through the Power Management Bus (PMBus) using the I>C
interface. The core and auxiliary voltages are supplied to the
board using power regulators. An application ensures from
the PS-side that the desired power is achieved. Furthermore,
it monitors dynamically the power dissipation of the re-
configurable hardware.



TABLE 1
OVERVIEW OF THE SCHEDULED TASKS IN FREERTOS ON ONE
ARM-CORE.

Application Function Execution Time [ms]

Power Monitoring 262.05
Image Processing Application 95.32
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Fig. 2. System Overview. Power app: application for DVS and power mea-
surement, Img app: Image processing application with hardware accelerated
function on PL

The application is built on two main tasks. The first one
monitors the power dissipation and controls dynamically the
voltage scaling of the PL-side. The second one contains the im-
age processing application (as described in section III). Xilinx
SDSoC permits only to use one of the dual-core processors
so that an operating system was required to schedule both
functions. FreeRTOS is also deployed to keep the soft real-
time requirement of the application. A preemptive priority-
based scheduler, guarantees that either the power monitoring
task or the image processing application runs at each clock
cycle. The power monitoring (described as Task 1) has a higher
priority than the image processing application (described as
Task 2). At the beginning, Task 1 starts to measure power of
PL. Then it is blocked by a delay of approximately 95 ms.
The scheduler enables the execution of the Task 2 in that
delay. Both tasks are running periodically and are executed
completely for approximately 360 ms. Task 2 is preempted
multiple times by Task 1 to provide power measurement from
the PL-side. Table I shows the overview of the task scheduling.

A median filter is running on the PL-side in Task 2.
Xilinx SDSoC allows to accelerate functions of the software
application into the PL-side of SoC. An overview of the
implemented hardware architecture is shown in Figure 2.

For this project, the most interesting part is acceleration of
the image processing application in hardware. Only voltage
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scaling and power measurement of the PL was done. This
improved the total measurement time of power consumption
by 14 times as compared to measuring all voltage rails, due
to less computation. The voltage rails of the board allow to
measure voltage and current of each rail supplied to the board.
Voltage scaling of PL. was adapted by setting voltage level in
software and can be set dynamically.

V. DYNAMIC PARTIAL RECONFIGURATION

DPR offers the flexibility to reconfigure a design with
different Reconfigurable Modules (RMs) at runtime reusing
the same hardware resources on the FPGA floorplan. A DPR
design consists of a static part and one or more Reconfigurable
Partitions (RPs) that are dynamically reconfigured with the de-
sired Reconfigurable Module (RM), depending on the design.
A set of partial bitstreams are generated for all of the RMs of
the reconfigurable system. Xilinx’s DPR technique is used on
this paper by dynamically reconfiguring the RPs through the
Processor Configuration Access Port (PCAP).

The PL can be configured and reconfigured by the software
running on the PS using the PCAP path in the Device Con-
figuration Interface (DevC) [15]. The Advanced eXtensible
Interface (AXI)-PCAP bridge is the main component in the
configuration of the PL for deployment of bitstreams. The
PCAP bridge converts 32-bit AXI formatted data into the 32-
bit PCAP protocol and vice versa [16].

The DMA-Controller (DMA) included in the PCAP trans-
fers the data of the bitstream between the memory device,
usually the Double Data Rate (DDR) memory, into the First In
First Out (FIFO) registers of the PCAP bridge over an AXI-
Interconnect. The DevC driver functions have to set up the
PCAP bridge into the correct mode and initialize the DMA
transfer to send the full and the partial bitstream from the
memory device to the FIFOs. In non-secure mode, the transfer
rate through the PCAP bridge is around 145 MB/s. The PL
configuration module can accept data at the rate of 32 bits per
PCAP clock, but the overall throughput is limited by the PS
AXI interconnect [15].

The design shown in Figure 3 includes an AXI-DMA, a
FIFO and two HLS cores, which will act as RMs. It has
been implemented on the TULIPP hardware instance, which
is based on the EMC2-Z7030 board. Two case studies are
presented here. One core is a passthrough and the second
one is a sepia filter. They have been designed to have the
same entity to apply the DPR technique. Therefore, they are
composed by an input and an output AXI-Stream interface for
streaming the images, as described in Section III-C.

At the beginning, one RM is reconfigured. Then, an image
is read from a Secure Digital (SD) card, loaded into memory
and streamed via the AXI-DMA to the filter. Its output is read
back from the AXI-DMA to later save the result into the SD
card. It is important to highlight that any filter, based on the
image processing library described in Section III-C, can be
included in this design to be partially reconfigured.
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Fig. 3. Static design for the case studies.

VI. DEBUGGING SUPPORT

During the design phase, many bugs are expected. If they
are encountered during the simulation phase, they are easy
to solve. However, in many cases, the bugs are encoun-
tered during the hardware phase. Hardware validation and
verification are the most critical steps because of hardware
invisibility. Even in case of Integrated Logic Analyzers (ILAs),
the monitored signals are visible only for few clock cy-
cles depending upon the hardware resources. We presented
a debugging system which can provide complete visibility
and lossless stream of data, effectively with an unlimited
debug window [17]. The processor-based debugging system is
utilized to collect the data from onboard trace buffers. Once
they are full, the Device Under Test (DUT) is stopped by the
clock manager and then the data is transferred to the terminal
for processing through the available communication port. After
the data transfer, the debugging system starts clocking the
DUT again and the iterative process can continue. The data
can be viewed by any waveform viewer. The block diagram
of the hardware platform is shown in Figure 4.

The debugging system comprises of three modules namely
the hardware platform, the debugging system software driver
and a Graphical User Interface (GUI) running on the terminal.
The software driver has been developed for FreeRTOS using
C/C++ programming language. However, the code is generic
and can be ported to any other operating system with minimal
effort. The block diagram of the software is shown in Figure
5.

The debugging system driver is based upon the drivers
of different peripherals used in the debugging system. The
debugging system contains a DMA, interrupt controller and
GPIOs. Based upon the same analogy, the main ingredients of
the driver are interrupt setup, DMA initialization, debugging
system re-initialization in the interrupt handler and the data
transmission through serial data communication. In order to
setup the debugging system, we used the same base addresses
included in the specification files. The debugging system also
needs to communicate with the terminal in order to transfer
data. Serial data communication has been used so that other
available communication channels like Ethernet, PCI etc. can
be used for other application. At the terminal side, the GUI is
used to setup the serial port. Then it starts receiving the data.
Once the data has been received and no more data transfer is
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Fig. 5. Debugging system software

required, the communication can be stopped through the GUI.
The debugging data is then plotted. After the completion of
the process, the GUI can be used to close the serial port and
save the data which can be post-processed afterwards.

VII. EVALUATION

A. Dynamic Voltage Scaling

DVS was tested by scaling the voltage to different levels
dynamically and monitoring the power consumption of the
PL. The image processing function used for evaluation of
DVS is a 3x3 Median Filter for 1920x1080 16-bit images.
It is processing 1-pixel per clock cycle (plus overhead). The
resource utilization of the entire system with the filter median
moved to the PL-side (operating at 100 MHz) is shown in
Table II.

The voltage of normal execution of the image processing
application without any voltage scaling was approximately
1.0V and was taken as reference. For evaluation, different
voltage levels were set at 0.85V, 0.90V and 0.95V. Average
power consumption after voltage scaling was measured and



TABLE II
RESOURCE UTILIZATION OF THE MEDIAN FILTER

Resource Used Total % Utilization
DSP 0 220 0
BRAM 18 140 12.86
LUT 9842 53200 18.5
FF 11984 105400 11.26
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Fig. 6. Average power consumption

compared with power consumption of the normal operation.
Figure 6 shows the results of the test.

It can be noted from the chart that power consumption with
scaling is lower as compared with normal execution of image
processing application. For 0.95V scaling, power consumption
is reduced by 23.2%, for 0.90 V scaling, it is reduced by 33.2%
and for 0.85V scaling, it is reduced by 37.6% as compared to
normal execution without any scaling.

It was also interesting to note the execution time of the
median filter. With hardware acceleration, the median filter
executed at an average time of 20.880 ms and execution on
software took an average of 653.785 ms. This means that
with hardware acceleration the median filter executed 31 times
faster as compared to software execution.

DVS results show that power consumption can be reduced
up to 37% using voltage scaling. This can be improved if
dynamic frequency scaling is also added to this project. For
frequency scaling, a custom SDSoC platform would be needed
for implementation. A performance parameter will be helpful
in implementing a complete DVFS system. It will help to
improve both power consumption and performance of the
system.

B. Dynamic Partial Reconfiguration

DPR is running as a standalone application. As described in
Section V, two RM can be changed at runtime so that either
the passthrough or sepia filter runs after the reconfiguration.
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The images used for the case studies are 256x256 RGB in 32
bits. Table III shows the execution time of each function.

TABLE III
OVERVIEW ABOUT THE RUNNING SOFTWARE TASK WITH DYNAMIC
PARTIAL RECONFIGURATION

Application Function = Execution Time [ms]

Bitstream Loading 517.050
Initialization 0.034
Reconfiguration Time 10.000
Reconfigurable Module 1.316

At the beginning, all available partial bitstreams (1,250
Kbytes each) are loaded from the SD card into the memory.
Then, the PCAP-controller is initialized to reconfigure only
one core at runtime. Despite having two cores, their recon-
figurable times are the same due to the fact that all partial
bitstream have the same size.

C. Debugging support

In order to test the debugging system, a Gaussian filter
was used as DUT. The filter has a window generator in
which the image width, height and size of input pixel data
can be specified. For the current research work, input image
comprises of 1000 x 1700 pixels with each pixel represented
by 8 bits. The second stage of the filter is a Gaussian 7x7
kernel. Output of Gaussian kernel is a 16-bit image pixel
(I'mage_pizel_out). Both of these modules are designed in
VHDL.

1) Simulation Results: During the debugging phase, when
the data is transferred to the terminal, any open source
waveform viewer can be used for data viewing. GTKWave
was used to plot the data. We monitored the input and outputs
pins of the Gaussian filter without data loss and capture
window limitation. In contrast, the traditional debugging ap-
proaches are limited to the capture window. For traditional
approaches, an increase in capture window requires more
hardware resources. Furthermore, increase in capture window
is not possible beyond a certain limit. On the contrary, the
debugging system used in this research work requires minimal
resources and provides unlimited capture window. Hence, the
presented debugging system makes debugging easier because
of the unlimited window size and no data loss.

2) Resource Utilization: The debugging system can be
snythesized with a range of tracing windows. Resource uti-
lization of the presented debugging methodology for TULIPP
board is synthesized with a trace window of 64 and 1024
as shown in Figure 7. 16 signals are monitored with a
maximum data width of 32 bits. Resource utilization of the
presented debugging system increases with an increase in
tracing window, because more BRAM blocks are required as
trace buffers. Debugging with a larger window is better since
it permits to capture more data in one iteration and hence it is
faster. However, the lossless nature of the debugging ensures
the completeness of data. In case of resource-scarce designs,
the 64 trace window can be used without any loss of data.
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Fig. 7. Resource utilization for debugging support on a Zynq

VIII. CONCLUSION AND FUTURE WORK

It is possible to apply techniques such as DVS and DPR, re-
duce the power consumption of image processing applications.
As shown in Section VII, the power consumption was reduced
up to 37.6% with DVS. For DPR we cam swap between
different reconfigurable filters at runtime without the need to
re-synthesize the entire design. Due to the high complexity
of combining these approaches, the debugging supports the
fast development and validation of the hardware for image
processing systems. Besides, increasing its sample rate will not
represent an additional overhead for the resource utilization.

One step for future work will consist of creating a custom
IP, which runs on PL-side and is responsible for DVFS. This
will allow it to run in parallel with any other image processing
application and will give more accurate results. Later on,
integrating DVFS and PR techniques together would be the
next step. Besides, the concepts shown in this work will be
applied for multi-cores real-time operating systems, such as
HIPPEROS [18].
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