Studying Data Forwarding
on a Non-Coherent Tiled Multicore

Asbjern Djupdal, Magnus Jahre, and Magnus Sjalander
Norwegian University of Science and Technology, NTNU
firstname.lastname@idi.ntnu.no

ABSTRACT

Evaluation of experimental multicore architectures using a
software simulator can be very time-consuming. This pa-
per presents the Single-isa Heterogeneous MAny-core Com-
puter (SHMAC) platform for doing design space exploration
and performance evaluation of multicores. SHMAC makes
it easy to custom build a tiled multicore architecture using
simple RISC-V CPU cores in a mesh interconnect. This can
then be synthesized for an FPGA where programs can be
evaluated much faster than with a simulator.

Interconnect utilization is an important consideration for
multicores. Congestion at busy hot spots leads to increased
latency and reduced performance. Unnecessary traffic repre-
sents wasted energy. This paper investigates several different
techniques to reduce interconnect traffic and congestion in a
tiled multicore, using SHMAC as the experimental platform.

1. INTRODUCTION

Modern hardware description languages (HDLs), such as
Chisel, increases productivity and the largest FPGAs can
fit an ever larger number of simple CPU cores for each new
generation. These combined effects makes FPGA prototyp-
ing of multicores more accessible. Large multicores simu-
late very slowly in software, while they run at acceptable
speeds in an FPGA. We have, therefore, developed SHMAC,
a framework for doing hardware prototyping, design space
exploration, and performance analysis on tiled multicores

This paper presents the SHMAC framework and uses it
to investigate various solutions to improve interconnect uti-
lization in a tiled multicore. We first present the SHMAC
framework (Sec. 2) in detail: CPU core (Sec. 2.1), intercon-
nect (Sec. 2.2), and memory (Sec. 2.3). We then present the
interconnect utilization study (Sec. 3) where we describe the
studied techniques (Sec. 3.1) and the various configurations
under test (Sec. 3.2). We finish the paper with discussing
the interconnect results (Sec. 3.5) and conclusions (Sec. 4).

2. SHMAC: A CONFIGURABLE TILED

MULTI CORE

SHMAC is a tile based architecture resembling the Tilera
and Epiphany multicores [1,2]. A top-level view of SHMAC
is shown in Fig. 1. The top-level architecture is a 2D rect-
angular mesh, with each tile communicating with each of
the four neighbors. Most of the tiles contain a CPU core
(marked “CPU” in the figure), the other tiles are special
purpose providing other capabilities to the SHMAC system,
such as memory or I/0O.

APB

I/0 te» CPU > ACC

' b b

CPU e L2 e CPU

' b b

ACCy CPU & SP

Figure 1: SHMAC top-level architecture, showing an exam-
ple 3x3 configuration with four CPU cores, two accelerators,
one L2 cache tile, one scratchpad memory tile, and one I/O
tile for external communication over AMBA APB.

SHMAC is highly configurable, properties such as mesh
dimensions and the type and capabilities of the different
tiles can be chosen prior to synthesis.

2.1 Processor Core

north

imem ICache

local

dmem DCache
re—> east

Tile Regs
Router

Tile Peripherals

RISC-V core

west

south

Figure 2: SHMAC CPU tile architecture

The CPU tile is shown in Fig. 2. The CPU tile, like any
other SHMAC tile, contains a router and a local core, which
in this case is a RISC-V CPU core.

The SHMAC CPU core is a small 32-bit integer-only RISC-
V [3] compatible core built on the Sodor Z-scale [4]. The core
has the same general architecture as the original Z-scale core,
but with the following modifications:

e Added instruction and data L1 caches and modified
pipeline to support variable memory access latency

e Added support for integer multiplication and division
e Added support for external interrupts

e Added support for atomic instructions

As shown in the figure, the tile also contains tile-local
registers and scratchpad memory. The registers are used
to provide the local CPU with information such as mesh
location and CPU ID. This version of SHMAC does not
support virtual memory, so to avoid concurrency conflicts
when using libc functions, a local scratchpad is provided for
newlibs _reent data.

2.2 Interconnect

The SHMAC interconnect is 2D and mesh based, imple-
menting XY-routing. Every tile contains a router that is
connected to the local core and to the routers in the four
neighboring tiles. The router implements store-and-forward
switching in a typical multi-stage architecture [5]. To reduce
latency through the router, there are only two stages: (1)
Route computation and (2) switch traversal. In addition,
the last stage can forward data directly to its output port
if the port is ready, resulting in a minimum latency of only
one cycle.

Each router link has two virtual channels; one is used
for request messages and one for response messages. This
ensures deadlock free routing in all SHMAC configurations.

2.3 Memory

The SHMAC memory hierarchy has three levels: L1 in-
struction and data caches located on the CPU tiles, L2
caches located on dedicated L2 tiles, and DDR memory that
exists outside of the SHMAC toplevel but reachable by the
L2 tiles. All caches are set-associative, and the L2 cache is
fully out-of-order to support requests from several cores at
once.

There is currently no support for hardware cache coher-
ence in the SHMAC system. Proper access to shared data
must be coordinated in software. Likewise, there is no sup-
port for virtual memory. All addresses in the system are
physical addresses.

2.4 Performance Analysis and Debugging

As the SHMAC platform is intended for research, an ex-
tensive set of performance counters are included, all acces-
sible by software running on the SHMAC CPU tiles. These
counters provide runtime information about the CPUs and
both levels of cache. CPU pipeline performance counters
are implemented as RISC-V CSR registers. Cache perfor-
mance counters are implemented as memory mapped regis-
ters, handled by the caches themselves. In addition, there is
a separate debug interface that enables control of the cores
using GDB running on the external host computer.

3. IMPROVING INTERCONNECT UTILIZA-

TION

The rest of this paper is dedicated to investigations into
interconnect utilization in tiled multicores, where SHMAC
is used as the experimental platform.

I/O 13 CPU > CPU (> L2

CPU &> CPU t&>t L2 >t CPU

CPU 1 L2 1 CPU > CPU

L2 e CPU & CPU 17 CPU

Figure 3: SHMAC configuration with four distributed L2
tiles

3.1 Investigated Techniques
3.1.1 Distributed L2 Cache

A centralized L2 cache, as shown in Fig. 1, is simple and
area efficient, but has the large disadvantage of quickly be-
coming a bottleneck as the number of L1 caches in the sys-
tem increases. A typical L2 cache can only accept at most
one access per cycle, much less if the L2 hit rate is low.

One solution is to distribute the 1.2 cache memory across
different tiles, each having its own instance of the L2 control
logic [6]. One example of this is shown in Fig. 3 where there
are four L2 cache tiles, each handling approximately i of the
total number of L2 accesses. The L2 tiles are all connected
to the single memory controller in a round-robin arbitrated
star network. The placement of the L2 tiles is important.
To spread the traffic as evenly as possible across the mesh,
no two L2 tile should share the same X or Y coordinate.
Placement along the diagonal, as shown in the figure, is a
good solution.

3.1.2 Forwarding Invalidation for Synchronization

One common way of implementing synchronization be-
tween cores is to have a synchronization variable that is writ-
ten by the signalling core and read by the waiting core. The
waiting core spins over this variable and does not advance
until the variable has been changed by the other core. This
is simple and works well, but has implications for traffic on
the interconnect.

In a system with a cache coherence protocol, the waiting
core can spin locally on its L1 cache until an invalidation
message appears from the L2 cache. A full cache coherence
protocol implemented in hardware in a chip multi proces-
sor (CMP) might not always be the preferred solution. In
a system without cache coherence, the spinning must effec-
tively be done on the L2 cache, resulting in increased L2
traffic. Exponential backoff reduces the traffic significantly,
but does not eliminate it.

For this paper we have added a forwarding instruction [7]
to the ISA that can be used to send invalidation messages
directly to the L1 cache of a different core. These mes-
sages are routed along the shortest path in the mesh and
are not required to pass through the L2 cache. By using
such forwarding messages, the waiting core can spin on its
local L1 cache until the signaling core executes its forward-
ing instruction, thus reducing both interconnect traffic and
L2 utilization.

Versatile Express

FPGA

AXI-APB Bridge

SHMAC

Host CPU

Figure 4: Host and SHMAC interaction

3.2 [Evaluated Configurations

In order to compare the techniques mentioned in Sec. 3.1,
several combinations of hardware and software configura-
tions must be evaluated. The following is a list of the com-
binations chosen for the experiments in this paper:

BOO0: Pthread synchronization variable uses self-invalidated
spinning, no exponential backoff. Centralized L2 cache.

BO14: Pthread synchronization variable uses self-invalidated
spinning, with exponential backoff MAX DELAY of
1 << 14 cycles. Centralized L2 cache.

FC: Pthread synchronization variable uses forward invali-
dated spinning. In addition, dedup queue synchroniza-
tion is also forward invalidated. Centralized L2 cache.

FWD (dedup only): Pthread synchronization variable uses
forward invalidated spinning and forwarding write is
used for data exchange between software pipeline stages.
Centralized L2 cache.

BO14 + 4xL2: Pthread synchronization variable uses self-
invalidated spinning, with exponential backoff
MAX_DELAY of 1 << 14 cycles. Distributed L2 cache
with four L2 tiles.

3.3 FPGA Synthesis and Core Execution

The SHMAC multicore is synthesized for a Xilinx Virtex7
2000T FPGA in an ARM Versatile Express development
system. Fig. 4 shows the host computer and its connection
to the the FPGA containing SHMAC. SHMAC acts as an
AMBA APB slave and its registers are directly accessible
through loads and stores on the host ARM processor. The
host runs Linux and custom software on this host is used for
controlling and monitoring the SHMAC multicore.

3.4 Benchmarks and Software Runtime Envi-
ronment

The hardware and software configurations in this paper
are evaluated on Dedup, Canneal and StreamCluster, which
are selected from the PARSEC benchmark suite [8]. Some
porting was needed, both due to a lack of cache coherency,
but also to incorporate the techniques under investigation.

All benchmarks run “bare-metal”; using only libc, a cus-
tom version of pthreads and a minimal OS kernel providing
necessary 1/0O. No thread scheduling is performed on the in-
dividual cores, each core is running only one thread. This
puts higher demand on benchmark load balancing but makes
system software simpler.

3.5 Experimental Results

Fig. 5 shows a performance comparison of the benchmarks
mentioned in Sec. 3.4. Each benchmark has been run in all
the different configurations mentioned in Sec. 3.2 with a 16
kB L1 instruction and 32 kB data cache. The L2 cache has
a constant size of 512kB and is in one central tile, except for
in the configuration marked BO14+4L2 where the L2 is dis-
tributed across four tiles. Performance here is runtime of the
measured section of the benchmarks. Runtime is normalized
to the baseline configuration BOO for each benchmark.

Performance as measured in runtime is important, but de-
pends on a lot of factors of the system under test. The main
focus for this paper is interconnect utilization. To illustrate
how the various configurations affect total interconnect traf-
fic, Fig. 6 shows the total number of data transfers from the
L2 cache to all the L1 data caches. The figure is otherwise
organized as Fig. 5.

3.5.1 Centralized vs Distributed L2

The first insight from Fig. 5 is that a distributed L2 cache
can provide a significant performance increase. When com-
paring the distributed variant (BO14+44L2) with the equiva-
lent centralized variant (BO14), the distributed variant per-
forms in general better or as good as the centralized variant.
This is expected. By distributing the L2 cache across four
different tiles, the L2 traffic is also distributed across the
mesh, effectively increasing the bandwidth. In addition, up
to four L2 accesses can be handled in parallel. This is well
known by the community and the reason for the popularity
of distributed L2 caches [1,6].

3.5.2 Exponential Backoff vs Forward Invalidation

A second insight to be learned from Fig. 5 is regarding
choice of synchronization implementation. It is clear that
the BOO configuration, the self-invalidation variant without
exponential backoff, is a bad solution. For Dedup the per-
formance is much worse, and for the other benchmarks it is
marginally worse than the other variants. BO14 and FC do,
however, not seem to differ significantly in performance.

Fig. 6 provides a more interesting view on the situation.
In this figure it is immediately obvious that BOO produces
significantly more L2 traffic than any other configuration by
a large margin. The number of L2 reads issued by the L1
data caches is dominated by the synchronization variable in
the BOO variant. It is also clear that the other configurations
are more equal in their generated L2 traffic.

It is expected that the Canneal benchmark is relatively un-
affected by the synchronization implementation; its barrier
synchronization is too coarse grained. Likewise, Stream-
cluster spends too much time doing floating point for the
differences between BO14 and FC to be of significance.

The exception is Dedup, where there is a notable differ-
ence between all variants. Fig. 7 shows the differences be-
tween BO14 and FC in more detail by plotting the combined
number of reads per cycle for all 1.1 data caches in the sys-
tem. Forwarding invalidation (FC) reduces the L2 read traf-
fic by a modest 4% compared to using exponential backoff
(BO14). The figure also shows that L2 congestion happens
at around 0.25-0.30 data cache reads per cycle. The rea-
son for not reaching one read per cycle is that instruction
caches also generate traffic, and that many concurrent L2
misses (more than the available number of MSHRs) lead to
the L2 cache stalling.

Normalized to BOO

Dedup Canneal Streamcluster
D1Medium D1Medium D1Medium

. BOO

Il BO14

mm FC

Em FWD

EEm BO14 + 412

Dedup Canneal Streamcluster
Dllarge Dllarge Dllarge

Benchmarks/Configurations

Figure 5: PARSEC performance. Smaller is better

Normalized to BOO

Canneal Streamcluster

Dedup
D1Medium D1Medium D1Medium

. BOO

m BO14

mm FC

. FWD

EEm BO14 + 412

Dedup Canneal Streamcluster
Dllarge Dilarge DiLarge

Benchmarks/Configurations

Figure 6: PARSEC L1D-L2 reads. Smaller is better

0.35
0.30}
14
2 o.2sf
>
S
H*
"
el
©
L 0.20f+
H*
0.15r — BO14]]
— FC
— FWD
0.10 L L L L L n
12 14 16 18 20 22 24

CPUs

Figure 7: Dedup L1D-L2 reads per cycle.

4. CONCLUSION

We have presented the Single-isa Heterogenous MAny-
Core Computer (SHMAC) evaluation framework, which is
based on a tiled 2D mesh architecture similar to that of
Tilera [9] and Epiphany [2]. The SHMAC framework is
highly configurable and can easily be implemented on an
FPGA. This makes the SHMAC framework suitable for per-
forming design space explorations of multicore architectures
that otherwise requires significant simulation efforts if per-
formed in a software simulator. This is exemplified by the
performed interconnect study where we show that data for-
warding can reduce the interconnect traffic to the L2 cache
by directly sending data to the awaiting L1 data cache.

Acknowledgement

We thank ARM Norway for their generous donation of the
ARM Versatile Express development system.

5. REFERENCES

[1] Tile Processor Architecture Overview for the TILEPro
Series, Tilera Corporation, 2013.

[2] Epiphany Architecture Reference, Adapteva, Inc., Mar.
2014, http://adapteva.com/docs/epiphany_arch_ref.pdf.

[3] A. Waterman, Y. Lee, D. Patterson, and K. Asanovic,
The RISC-V Instruction Set Manual, 2014.

[4] C. Celio and E. Love, “The Sodor processor collection,”
https://github.com /ucb-bar /riscv-sodor.

[5] W. J. Dally and B. P. Towles, Principles and Practices
of Interconnection Networks, 1st ed. Morgan
Kaufmann, 2004.

[6] L. A. Barroso, K. Gharachorloo, R. McNamara,

A. Nowatzyk, S. Qadeer, B. Sano, S. Smith, R. Stets,
and B. Verghese, “Piranha: A scalable architecture
based on single-chip multiprocessing,” in Proceedings of
the International Symposium on Computer
Architecture, 2000, pp. 282—293.

[7] D. Poulsen and P.-c. Yew, “Data prefetching and data
forwarding in shared memory multiprocessors,” in
Proceedings of the International Conference on Parallel
Processing, vol. 2, aug 1994, pp. 280-280.

[8] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The
PARSEC benchmark suite: Characterization and
architectural implications,” Princeton University, Tech.
Rep. TR-811-08, 2008.

[9] Tile Processor User Architecture Manual, Tilera
Corporation, 2011.

