
Towards Aggregated Grain Graphs
Nico Reissmann

Norwegian University of Science and
Technology

nico.reissmann@ntnu.no

Magnus Jahre
Norwegian University of Science and

Technology
magnus.jahre@ntnu.no

Ananya Muddukrishna
Norwegian University of Science and

Technology
ananya.muddukrishna@ntnu.no

ABSTRACT
Grain graphs simplify OpenMP performance analysis by visualizing
performance problems from a fork-join perspective that is familiar
to programmers. However, it is tedious to navigate and diagnose
problems in large grain graphs with thousands of task and paral-
lel for-loop chunk instances. We present an aggregation method
that matches recurring patterns in grain graphs and groups related
nodes together, reducing graphs of any size to one root group. The
aggregated grain graph is then navigated by progressively uncov-
ering groups and analyzing only those groups that have problems.
This enhances productivity by enabling programmers to under-
stand program structure and problems in large grain graphs with
less effort than before.

CCS CONCEPTS
•Human-centered computing→Graph drawings; •Comput-
ing methodologies → Parallel programming languages;

KEYWORDS
performance visualization; OpenMP; grain graphs

ACM Reference format:
Nico Reissmann, Magnus Jahre, and Ananya Muddukrishna. 2017. Towards
Aggregated Grain Graphs. In Proceedings of Fourth International Workshop
on Visual Performance Analysis (VPA), Denver, Colorado, USA, November 17,
2017, 8 pages.
https://doi.org/DOI-NA

1 INTRODUCTION
The grain graph [19] is a recent visualization method that simplifies
OpenMP performance analysis by visualizing problems of task and
parallel for-loop chunk instances, collectively called grains, from
a fork-join perspective. Grains that suffer crippling performance
problems such as work inflation, inadequate parallelism, and low
parallelization benefit are pin-pointed on the grain graph along
with precise links to problem areas in source code. This enables pro-
grammers to perform optimizations productively without relying
on experts or trial-and-error tuning.

Large grain graphs with thousands of grains (Figure 1) are typi-
cal of OpenMP programs that expose abundant, fine-grained par-
allelism. The high degree of parallelism ensures scalability on
large machines but requires low-overhead, locality-aware schedul-
ing [17, 21, 30]. Scalability problems that occur when the scheduling
requirement is not met are pin-pointed on the grain graph using

Fourth International Workshop on Visual Performance Analysis (VPA), November 17,
2017, Denver, Colorado, USA
Year-NA. ACM ISBN ISBN-NA. . . $Price-NA
https://doi.org/DOI-NA

Figure 1: Grain graph of the task-based Sort program from
the Barcelona OpenMP Task Suite (BOTS) for large in-
put (n=20971520, cutoffs={65536,8192,128}) is dense with
11059 grains. Inset (bottom) zooms into a section at magnifi-
cation 40X.

metrics that indicate low parallelization benefit, work inflation, and
poor memory hierarchy utilization.

Diagnosing problems in large grain graphs requires tedious in-
spection. Programmers have to zoom and pan attentively to differ-
ent sections while remembering characteristics of visited sections
(Figure 1 inset) . Problems that are spread out become difficult to
locate. Non-problematic grains that are shown dimmed to increase
focus on problems combine at lower zoom levels and become pro-
nounced. Programmers can perceive the dimming effect and spot
problematic grains only when zoomed into higher levels. A power-
ful workstation with a large screen and copious amount of main
memory is required by the graph viewer program to render large
grain graphs responsively. In light of these demands, programmers
prefer to pore over text summaries and tabular formats of large
graphs and reserve the visual approach only for small graphs with
a few hundred grains since they are analyzed quickly with little or
no navigation.

This paper contributes with a new aggregation method that
makes visual analysis of large grain graphs practical. The aggrega-
tion method (Section 3) groups related nodes by matching recurrent
patterns in the grain graph. This results in an aggregated graphwith
a single group node. Programmers navigate the aggregated graph
by progressively opening and closing groups. Groups with prob-
lems are highlighted and non-problematic sections are removed
from sight for distraction-free diagnosis. Using standard OpenMP
examples, we demonstrate (Sections 3 and 4) that aggregated grain
graphs enable programmers to understand program structure and
diagnose problematic sections with less effort than what is required
for unaggregated graphs. This further enhances the productivity of
performance analysis using grain graphs.

https://doi.org/DOI-NA
https://doi.org/DOI-NA


(a) (b)
Figure 2: Grain graph of the task-based Sort program from
BOTS for small input (n=512, cutoffs={256,64,16}). (a)
Graph contains 33 grains. Parent and child grains are placed
close together using the Sugiyama layout. (b) Grains with
low parallel benefit highlighted with a superimposed red
color in a separate view are easily understood at first
glimpse.

2 BACKGROUND ON GRAIN GRAPHS
The grain graph [19] is a visualization for OpenMP that connects
performance problems to the fork-join program structure at the
resolution of grains – task and parallel for-loop chunk instances
created during execution. Since programmers readily identify with
the fork-join program structure in terms of grains, problem diag-
nosis is simplified. In contrast, existing visualizations based on
timeliness and call graphs complicate diagnosis by connecting per-
formance problems to scheduling events that are unfamiliar and
unpredictable to programmers [12, 19].

2.1 Structure
The grain graph is a directed acyclic graph (DAG) whose nodes
denote grains and runtime system operations, and edges denote
control-flow. Parent and child grains are shown in close proximity
on the graph without timing as a placement constraint to maintain
the fork-join perspective that programmers are familiar with (Fig-
ure 2a1). The timing-independent placement is also called logical-
time placement [6, 12].

The grain graph is laid out using a hierarchical layout called the
Sugiyama layout [26]. This layout places nodes in layers, removes
1Colors are crucial to appreciate grain graphs. Readers are requested to print the paper
in color.

cycles, and prevents edge crossings. These features are essential
to depict fork-join progression in an uncluttered manner to pro-
grammers. Practical implementations of the Sugiyama layout algo-
rithm have time and space complexity of O (( |V | + |E)loд |E |) and
O ( |V | + |E |), respectively, where V is the set of vertices and E the
set of edges in the graph [8].

2.2 Diagnosing problems
Performance metrics of grains measured during profiling and de-
rived post profiling are added as annotations to the grain graph.
The profiled metrics include execution time, cache miss ratio, mem-
ory latency, and timestamps of control-flow events such as grain
creation and synchronization. These are used to compute derived
metrics such as critical path, work deviation, instantaneous par-
allelism, memory hierarchy utilization, scatter, load balance, and
parallel benefit.

Parallel benefit is a custom metric used in several discussions in
the paper. The metric is equal to a grain’s execution time divided by
its parallelization cost including creation time. This aids inlining and
cutoff decisions by quantifying whether parallelization is beneficial.
Grains with low parallel benefit should be executed sequentially to
reduce overhead.

Commonly sought out metrics are encoded visually for quick
identification on the graph (Figure 2a). The length of a grain is set
proportional to its execution time. Grain colors denote source code
locations by default. Edges are colored by type and highlighted red
if they are on the critical path.

Grains with metric values that cross sensible thresholds are in-
ferred as problematic and highlighted with a superimposed color
that encodes problem severity in a separate view (Figure 2b). Pro-
grammers can refine the thresholds if required. Non-problematic
grains are shown dimmed to help programmers focus on problems.
Problems are also summarized in a separate text file and highlighted
in the tabular form of the grain graph.

Diagnosis begins once the grain graph is laid out in Sugiyama
style by the graph viewer program. The grain graph has multiple
conceptual views with colors encoding a single problem or property
per view. Programmers shift views to understand properties or pick
problems to tackle. Problematic grains are readily identified since
they are highlighted and non-problematic grains dimmed. Clicking
on a grain opens up a separate window that shows its properties and
performance metrics. Figures 2b-a show the programmer cycling
between the parallel benefit problem view and the structural view
where no problems are highlighted.

3 GRAIN GRAPH AGGREGATION METHOD
In this section, we present the aggregationmethod that shrinks large
grain graphs using pattern matching and enables programmers to
understand graph structure and problems progressively by opening
and closing groups.

Conceptually, the aggregated grain graph is produced in four
consecutive phases called reduction, normalization, propagation, and
separation. We explain these phases next, and discuss navigation of
the aggregated graph at the end.

Reduction: This phase matches two recurring patterns called
fork-join and linear patterns and replaces them with group

2



(a) (b) (c) (d) (e) (f) (g)

Figure 3: Reduction and normalization. (a) Example graph
taken from the subgraph of the rightmost child of the third
grain in Figure 2a. (b) After two fork-join pattern reductions.
(c-f) Linear pattern reductions leading to a single group
node. (g) Example graph after normalization.

nodes. The fork-join pattern consists of a single fork node
connected to child grains or groups, which in turn are con-
nected to a join node (Figure 3a). The linear pattern has two
nodes, either a grain or a group node, that are connected
to each other (Figure 3c). When matched, the fork-join and
linear patterns are replaced by group nodes called fork-join
and linear, respectively.
The repeated matching and replacement of the two patterns
reduces the grain graph to a single group node as illustrated
in Figures 3a-f.
Listing 1 shows the pseudocode of the reduction algorithm.
The code recursively reduces the grain graph by matching
fork-join and linear patterns as explained below:
• Line 6 in the pseudocode matches the linear pattern (Fig-
ure 3c-d). It uses the helper function is_дrainдroup to de-
tect whether a node and its successor is a grain or a group,
and reduces the pattern to a linear group node. Reduction
continues with the newly-created linear group node.
• Line 9 matches a grain or group node with a fork node
as successor. The matched fork node is recursively aggre-
gated to a fork-join group node (Figure 3a-b). The resulting
linear pattern is then reduced to a linear group node. Re-
duction continues with the linear group node.
• Line 13 matches a fork node (Figure 3a). Upon a match, it
recursively aggregates all successors of the fork node. The
resulting fork-join pattern is then reduced to a fork-join
group node. Reduction continues with the fork-join group
node.

Reduction greedily reduces the grain graph by always con-
tinuing with the newly-created group node after a pattern
match. It does not traverse past a join node. This ensures
that the innermost fork-join pattern in a nest is reduced first.
Reduction builds a tree of group and grain nodes called the
aggregation tree. The aggregation tree explicitly captures the

1 bool is_graingroup(Node n) {

2 return is_grain(n) || is_forkjoin(n) || is_linear(n)

3 }

4
5 void try_reduce(Node n) {

6 if (is_graingroup(n) && is_graingroup(succ(n))) {

7 n′ ← reduce_linear(n)

8 try_reduce(n′)

9 } else if (is_graingroup(n) && is_fork(succ(n))) {

10 try_reduce(succ(n))

11 n′ ← reduce_linear(n)

12 try_reduce(n′)

13 } else if (is_fork(n)) {

14 forall s in succ(n)

15 try_reduce(s)

16 n′ ← reduce_forkjoin(n)

17 try_reduce(n′)

18 }

19 }

Listing 1: Pseudocode of the reduction algorithm.

fork-join structure and nesting of a grain graph. Its leaves
are grains and its intermediate nodes are the newly-created
group nodes. Linear group nodes have the two nodes that
werematched in the corresponding pattern as children, while
fork-join group nodes have the children of the matched fork
node as children. The aggregation tree is used as the main
operational data structure in later phases to simplify pro-
cessing.
The reduction algorithm is applicable to grain graphs where
parents synchronize with all their children before comple-
tion. This essential completion property ensures that fork-
join patterns are properly nested, permitting their reduction
in a hierarchy of group nodes. The completion property
holds for well-behaved OpenMP 3.X programs. However,
the taskgroup construct from the recent 4.0 version of the
OpenMP standard permits parents to synchronize with their
children and descendants in one step. This violates the com-
pletion property and makes reduction inapplicable unless
the grain graph is restructured so that all descendants are
placed as immediate children of the root parent.

Normalization: This phase transforms the aggregation tree
into a canonical form by flattening nested linear group nodes.
In the reduction phase, a linear group node is always cre-
ated for a pair of grain or group nodes, even if more nodes
are chained together. This constructs nested linear subtrees
where linear group nodes are the children of other linear
group nodes as exemplified in Figures 3b-f. Normalization
flattens these subtrees to a single linear group node with all
non-linear group nodes from the subtree as its children. The
result of normalization for the example graph in Figure 3b is
shown in Figure 3g.

3



(a) (b) (c) (d)

Figure 4: Separation of problematic and non-problematic
nodes. (a-b) Fork-join node separation. (c-d) Linear node sep-
aration.

Propagation: After normalization, the metrics of child grains
and groups are propagated to the enclosing group, all theway
up to the root of the aggregation tree. This is accomplished by
traversing the aggregation tree in post-order and attributing
sensibly-combined metrics of children to the parent group.
For example, the work metric of a parent group is set to the
sum of the execution time of its children.
Metrics are attributed such that problems are propagated to
the root group. If a child is problematic, then the parent is
marked as problematic as well. The minimum of the memory
hierarchy utilization, parallel benefit, and instantaneous par-
allelism as well as the maximum of the load balance, work
deviation, and scatter metrics of children are attributed to
the parent group.

Separation: This phase groups non-problematic nodes to sepa-
rate them from problematic nodes, enabling programmers to
focus on problems and reduces load on the graph viewer pro-
gram. For example, consider a fork-join group that encloses
a thousand grains among which only a single grain is prob-
lematic. An unseparated graph would require all grains to
be rendered. In the separated graph, all the non-problematic
children are grouped. As a result, only two nodes need to be
rendered – the problematic grain and the non-problematic
group node.
Separation traverses the aggregation tree in post-order and
separates subtrees rooted at fork-join and linear nodes. In
a fork-join separation, a new group node that encloses all
non-problematic children of the fork-join node is created
(Figures 4a-b). In a linear node separation, a new linear group
node that encloses consecutive non-problematic children is
created (Figures 4c-d).
After the separation phase, the aggregation tree is converted
back to the grain graph where problematic subgraphs of
each group are exposed and non-problematic subgraphs are
hidden.

Navigation: Startingwith the root group, the aggregated grain
graph is navigated progressively by opening group nodes to
understand structure and problems, and closing them when

done (Figure 5). Since only a subset of grains in the graph are
laid out during the process, cognitive load on programmers
and resource requirements of the graph viewer program are
reduced.
Navigation is sped up using several optimizations:

(1) Groups can be opened completely to show all grains in-
cluding those inside subgroups or drilled down gradually
(Figures 5a-d) to a specific group or depth level.

(2) Group nodes are drawn as rounded rectangles with no
fill-color to differentiate from grains. Group metrics are
shown in a separate property window, similar to grains.
Opened groups grow as large as required to envelop mem-
bers whereas closed group nodes have a constant size. The
borders of problematic closed groups are colored red to
draw programmer attention. Similarly, borders of non-
problematic groups are colored green for quick identifi-
cation. Our choices for group colors and sizes allow pro-
grammers already familiar with grain graphs to smoothly
transit to the aggregation feature.

(3) Once a group’s structure is known, other groups with
similar structure can be navigated confidently or skipped
if problem-free. For example, 12 groups in Figure 5d have
the same structure. Similarity of groups is computed on-
demand using graph isomorphism decided by a Weisfeiler-
Lehman graph kernel [23]. The metric also finds its use in
comparing groups across runs to detect structural changes.
For example, grain graphs of search-based programs such
as Floorplan from BOTS change structure based on the
number of allocated threads. This can be detected using
the similarity metric.

(4) Groups on the global critical path are inspected first since
they are good optimization candidates (Figure 5e). Sim-
ilarly, the local critical path of groups not on the global
critical path can be computed on-demand and used for
prioritizing inspection.

4 PROTOTYPE IMPLEMENTATION
The grain graph visualization is implemented in a reference pro-
totype [20] that produces grain graphs in the GRAPHML format
by processing grain profiling data from OMPT extensions [15] or
the MIR runtime system [16–18]. Grain graphs are viewed on off-
the-shelf, large-scale graph viewer programs, such as yEd [31] and
Cytoscape [24].

We extended the reference prototype for grain graphs to produce
aggregated graphs in GRAPHML upon programmer request. The
aggregation method was implemented in C++, leveraging support
for nested groups [3] in the GRAPHML standard and using the
igraph [5] library for basic graph processing. Our prototype imple-
mentation of the aggregation method is available on GitHub for
review [22].

We used yEd to our best effort to view aggregated grain graphs.
At present, yEd is the only viewer with sufficiently mature support
for GRAPHML files with nested groups. yEd has features to interac-
tively open and close groups, and jump to groups at any level of the
hierarchy. The property editor dialog in yEd shows annotations of
nodes. Cycling between problem and structural views was achieved

4



(a) (b)

(c)

(d) (e)

Figure 5: Navigating the aggregated grain graph of NQueens program from BOTS for input (n=14, cutoff=4) that exposes fine-
grained parallelism. The graph has 21492 grains and 3073 group nodes. Grains with low parallelization benefit are highlighted
as problems. (a-d) Drilling down to sibling groups at a depth of 3 from the root group. (a) Root group. (b) At depth 1. (c) At
depth 2. (d) At depth 3. Red borders show that all groups are problematic. Programmers can quickly understand that 12 out
of 14 groups are structurally similar to each other using the similarity metric. (e) Drilling down along the critical path to
sibling groups at the lowest depth. The green-bordered group inside the sibling group hides non-problematic grains. This help
programmers focus on problems. The non-problematic group in the adjacent group is distracting since it is opened despite
being problem-free.

by switching to tabs of opened GRAPHML files. Each opened file
highlighted a problem. External programs parameterized by group
names were used to compute on-demand metrics – local critical
path and similarity. These programs do not update the visualization
and programmers are required to manually load their output into
yEd. Similarity was computed using a fast, third-party implemen-
tation of the Weisfeiler-Lehman graph kernel [27]. We recognize
that our aggregated graph interactions have quite some room for
improvement and are designing a dedicated viewer for grain graphs
as part of future work.

5 EVALUATION
We tested our aggregation prototype on grain graphs of C/C++
benchmarks from SPECOMP 2012 (SPEC-OMP12), BarcelonaOpenMP
Task Suite v2.1.2 (BOTS) and Parsec v3.0 (Parsec). The benchmarks
were compiled with MIR-linked GCC v4.4.7 and profiled on an
48-core test machine with 64GB memory and four 2.1GHz AMD
Opteron 6172 processors with frequency scaling disabled. Input val-
ues that exposed abundant, fine-grained parallelism were provided
to obtain large grain graphs (Table 1).

We use themetric visible node count, symbolized as θ , to judge the
ability of the aggregation method to reduce programmer effort in
navigating and diagnosing problems in large grain graphs. Visible
node count is defined as the minimum number of nodes that are
visible in the grain graph while diagnosing a problematic grain.

When visible node count is small, cognitive load on programmers
is reduced and fewer resources are consumed by the graph viewer
program.

The visible node count for a problematic grain in an aggregated
grain graph is the number of nodes exposed by opening groups in
the path leading to the grain. In contrast, the visible node count in
an unaggregated grain graph is equal to the number of nodes in the
entire graph irrespective of the position of the problematic grain.

Table 1 shows the maximum visible node count for the evalua-
tion benchmarks under two cases. The first is a conservative case
that assumes all grains in the graph are problematic. Maximum
visible node count for this case is denoted max(θc ). The second
case considers an actual problem – low parallel benefit. Maximum
visible node count for the second case is denoted max(θpb ). For
both cases, the reduction in maximum visible node count compared
to the total size of the graph, i.e., the maximum visible node count
for the unaggregated graph, is reported as Savings.

For the conservative first case, we see a large reduction in visible
node count. On average, the savings is 95.98%. The biggest savings
is 99.97% for the Strassen benchmark and the smallest savings
is 81.57% for Freqmine. This shows aggregation can significantly
reduce the visible node count for any problematic grain in our
evaluation setup.

For the case of low parallel benefit, we see a further reduction
in visible node count since grains that are non-problematic are

5



Table 1: Benefit of aggregation for standard OpenMP benchmarks is measured using reduction in number of visible nodes
during problem diagnosis.

Benchmark Input # Nodes # Grains max (θc )
Savings
(%)

Low Parallel Benefit
# Prbl. Grains max (θpb ) Savings (%)

FFT1 16777216, 8192, 2 9240 4592 53 99.43 414 49 99.47
Floorplan1 15, 7 117960 82490 149 99.87 31125 148 99.87
NQueens1 14, 4 24565 21492 70 99.71 10540 66 99.73
Sort1 20971520, 65536, 8192, 128 20293 11509 55 99.73 288 51 99.75
Strassen1 8192, 128, 2000 176480 137258 60 99.97 157 49 99.97
Blackscholes2 4M 2205 1201 112 94.92 400 112 94.92
Bodytrack2 B261, 4, 261, 4000, 5, 3, 48, 0 126615 69061 5767 95.45 24627 5757 95.45
Freqmine2 kosarak_990k.dat, 790 2111 2017 389 81.57 66 30 98.58
358.botsalgn3 prot.200.aa 20505 20101 406 98.02 7 17 99.92
359.botsspar3 64, 64 24161 23905 1154 95.22 2 9 99.96
367.imagick3 See caption of Figure 6 3935 3801 405 89.71 649 182 95.37
376.kdtree3 200000, 10, 2 32808 16400 58 99.82 2055 57 99.83
1 BOTS 2 Parsec 3 SPEC-OMP12

grouped during the separation phase (Section 3). Benchmarks Fre-
qmine, 367.imagick, 358.botsalgn, 359.botsspar, show large savings
from aggregation since they contain a small number of problematic
grains. On the other hand, Bodytrack and Floorplan show barely any
improvement over the conservative case due to a higher concentra-
tion of problematic grains that are clustered as siblings. Problematic
siblings are ignored during separation by design.

We further illustrate the benefit of aggregation using the aggre-
gated grain graph of 367.imagick benchmark from SPEC-OMP12
for the input that SPEC programmers have noted as poorly scal-
ing. 367.imagick is a clone of ImageMagick, a software suite for
image processing used widely on the command-line in UNIX-like
systems [11].

The unaggregated grain graph of 367.imagick shows a chain of
nine dense for-loops (Figure 6a). The sixth loop contains several
chunks that suffer from low parallel benefit since they miss paral-
lelization throttling macros called omp_throttle in source code. Di-
agnosing these problematic chunks requires programmers to sweep
deeply across the graph, all the while ignoring the abundance of
non-problematic grains and the frequent non-responsive rendering
of the graph by the overloaded graph viewer program. The aggre-
gated grain graph enables programmers to diagnose problematic
chunks group by group (Figure 6b). Only the group that contains
problematic chunks is kept open. Other uninteresting loops are
hidden from sight in closed groups. Non-problematic chunks are
separated to reduce distractions. The graph viewer program can
respond quickly since only a small fraction of nodes need to be
rendered.

6 RELATEDWORK
Aggregation is a standard approach to make visualizations scale
with increasing data [13, 28]. Sensible dimensions for aggregation
are found in many places including the program structure (for
example, tasks), middleware stack (worker threads), physical pro-
cessing components (processors), and the visualization (node-links).
However, since aggregation essentially reduces data and can be

applied aggressively, insights seen only when the aggregation di-
mensions are differentiated can be lost. Isaacs et al. [13] recognize
this balance between the amount of aggregation and showing useful
information to programmers as an important challenge. Our aggre-
gation method for grain graphs strives to maintain the same balance
by reducing the size of the rendered grain graph and focusing it
on problematic sections, without losing the fork-join perspective
expected by programmers.

For space reasons, we restrict our discussion to aggregation
of abstraction-centric, logical-time visualizations similar to grain
graphs, and direct readers interested in other aggregated visual-
izations to recent surveys [13, 28] and an excellent visualization
explorer [14].

The dominant aggregation scheme in visualizations is statistical
rather than visual, i.e., metrics of selected elements in the main
visualization are aggregated statistically and reported in a separate
visualization, typically as a property table [1, 2, 4, 7, 9, 25]. Cognitive
load of the main visualization is reduced only by zooming out
to focus on large elements. Support for visual aggregation while
maintaining the same zoom level is absent. Consequently, such
visualizations suffer similar navigation and diagnosis difficulties as
large grain graphs.

The aggregation method for task graphs in DAGViz [10] closely
resembles our work. DAGViz presents programmers with a single
aggregated node that can be interactively opened to reveal sub-
graphs. Our approach is tailored to grain graphs and is unique
in identifying the critical path and similarity of subgraphs. Fluid
interactions and a dedicated viewer are strengths of DAGViz that
inspire our future work.

ThreadScope [29] visualizes the dynamically unfolded, logical-
time structure of task-parallel programs.Memory operations, shown
as nodes in the visualization, can be aggregated into groups to im-
prove clarity. It is not reported whether programmers can interact
with groups to uncover members.

The causality graph [32] visualization allows programmers over-
whelmed by large graphs to manually select and aggregate nodes

6



(a)

(b)
Figure 6: Diagnosing problems with grains of 367.imagick from SPEC-OMP12 for input -shear 31 -resize 1280x960 -negate
-edge 14 -implode 1.2 -flop -convolve 1,2,1,4,3,4,1,2,1 -edge 100 ref/input/input1.tga. (a) Sweeping across the
entire unaggregated graph with 3801 grains to spot problems. (b) Aggregated grain graph enables programmers to diagnose
problematic grains group-wise. Non-problematic grains are separated to promote focus (inset).

7



within the same scope into group nodes called supernodes. Supern-
odes can be repeatedly aggregated and uncovered to show member
nodes. Special care is taken to ensure cycles are not created when
supernodes are added to the graph. Supernode metrics include
the local critical path and metrics computed using user-defined
combination operations. Our grain graph aggregation method is
similar except for the presentation of the aggregated graph. We
present a fully-aggregated graph that programmers can progres-
sively uncover and spot problems guided by sensible aggregation
metrics.

7 CONCLUSION
The contribution of this paper is an aggregation method that re-
duces programmer effort spent in navigating and diagnosing prob-
lems in large grain graphs. The aggregation method groups nodes
arranged in recurring patterns in the grain graph to produce a
single-node aggregated graph that programmers navigate by pro-
gressively opening and closing groups. Problematic groups are
highlighted and non-problematic sections are cleared from sight in
the aggregated grain graph, enabling focus without compromising
the fork-join perspective expected by programmers. Using standard
OpenMP programs as examples, the paper demonstrated that aggre-
gated grain graphs significantly reduce the number of visible nodes
while diagnosing problems. For future work, we plan to implement a
dedicated viewer for aggregated grain graphs that smoothly guides
programmers towards urgent and important problems.

ACKNOWLEDGMENT
The paper was funded by the TULIPP project (grant number 688403)
and the READEX project (grant number 671657) from the EU Hori-
zon 2020 Research and Innovation programme. The authors thank
Peder Voldnes Langdal (NTNU), Magnus Själander (NTNU), and
Jan Christian Meyer (NTNU) for constructive comments and KTH
Royal Institute of Technology for providing test machinery.

REFERENCES
[1] Barcelona Supercomputing Center. 2013. OmpSs Task Dependency Graph.

(2013). http://pm.bsc.es/ompss-docs/user-guide/run-programs-plugin-
instrument-tdg.html. Accessed 10 April 2015.

[2] Wolfgang Blochinger, Michael Kaufmann, and Martin Siebenhaller. 2005. Visual-
izing Structural Properties of Irregular Parallel Computations. In Proceedings of
the 2005 ACM Symposium on Software Visualization. ACM, 125–134.

[3] Ulrik Brandes, Markus Eiglsperger, and Jürgen Lerner. 2017. GRAPHML primer.
(2017). http://graphml.graphdrawing.org/primer/graphml-primer.html. Accessed
27 July 2017.

[4] Steffen Brinkmann, José Gracia, and Christoph Niethammer. 2013. Task Debug-
ging with TEMANEJO. In Tools for High Performance Computing 2012. Springer,
13–21.

[5] Gabor Csardi and Tamas Nepusz. 2006. The igraph software package for complex
network research. InterJournal Complex Systems (2006), 1695.

[6] Janice E. Cuny, Alfred A. Hough, and Joydip Kundu. 1992. Logical time in visual-
izations produced by parallel programs. In Proceedings of the IEEE Conference on
Visualization. 186–193.

[7] Andi Drebes, Jean-Baptiste Bréjon, Antoniu Pop, Karine Heydemann, and Albert
Cohen. 2016. Language-Centric Performance Analysis of OpenMP Programs
with Aftermath. In International Workshop on OpenMP.

[8] Markus Eiglsperger, Martin Siebenhaller, and Michael Kaufmann. 2004. An
efficient implementation of Sugiyama’s algorithm for layered graph drawing. In
International Symposium on Graph Drawing. Springer, 155–166.

[9] Blake Haugen, Stephen Richmond, Jakub Kurzak, Chad A. Steed, and Jack Don-
garra. 2015. Visualizing Execution Traces with Task Dependencies. In Proceedings
of the 2Nd Workshop on Visual Performance Analysis. ACM, 2:1–2:8.

[10] An Huynh, Douglas Thain, Miquel Pericàs, and Kenjiro Taura. 2015. DAGViz: a
DAG visualization tool for analyzing task-parallel program traces. In Proceedings
of the 2nd Workshop on Visual Performance Analysis. ACM, 3.

[11] ImageMagick Studio LLC. 2017. ImageMagick Official Website. (2017). https:
//www.imagemagick.org. Accessed 27 July 2017.

[12] Katherine E. Isaacs, Peer-Timo Bremer, Ilir Jusufi, Todd Gamblin, Abhinav Bhatele,
Martin Schulz, and Bernd Hamann. 2014. Combing the communication hair-
ball: Visualizing large-scale parallel execution traces using logical time. IEEE
Transactions on Visualization and Computer Graphics, Proceedings of InfoVis ’14
12 (2014).

[13] Katherine E Isaacs, Alfredo Giménez, Ilir Juster, Todd Gamblin, Abhinav Bhatele,
Martin Schulz, Bernd Hamann, and Peer-Timo Bremer. 2014. State of the art of
performance visualization. EuroVis 2014 (2014).

[14] Katherine Isaacs. 2017. Performance Visualization: Living digital library of State
of the Art of Performance Visualization. (2017). http://cgi.cs.arizona.edu/~kisaacs/
STAR/. Accessed 31 July 2017.

[15] Peder Voldnes Langdal, Magnus Jahre, and Ananya Muddukrishna. 2017. Extend-
ing OMPT to Support Grain Graphs. In Scaling OpenMP for Exascale Performance
and Portability. Springer. To appear in proceedings of the InternationalWorkshop
on OpenMP (IWOMP) 2017.

[16] Ananya Muddukrishna, Peter A. Jonsson, and Mats Brorsson. 2015. Characteriz-
ing Task-Based OpenMP Programs. PLoS ONE 10, 4 (2015), e0123545.

[17] Ananya Muddukrishna, Peter A Jonsson, and Mats Brorsson. 2015. Locality-
aware task scheduling and data distribution for OpenMP programs on NUMA
systems and manycore processors. Scientific Programming 2015 (2015), 5.

[18] Ananya Muddukrishna, Peter A. Jonsson, and Peder Langdal. 2017. anamud/mir-
dev: MIR v1.0.0. (March 2017). https://doi.org/10.5281/zenodo.439351

[19] AnanyaMuddukrishna, Peter A. Jonsson, Artur Podobas, andMats Brorsson. 2016.
Grain Graphs: OpenMP Performance Analysis Made Easy. In Proceedings of the
21st ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming.
ACM, 28:1–28:13.

[20] Ananya Muddukrishna and Peder Langdal. 2017. anamud/grain-graphs: Grain
Graphs v1.0.0. (March 2017). https://doi.org/10.5281/zenodo.439355

[21] Stephen L. Olivier, Bronis R. de Supinski, Martin Schulz, and Jan F. Prins. 2012.
Characterizing and Mitigating Work Time Inflation in Task Parallel Programs.
In Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis. IEEE Computer Society Press, 65:1–65:12.

[22] Nico Reissmann. 2017. phate/ggraph: VPA17. (July 2017). https://doi.org/10.5281/
zenodo.836838

[23] Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn,
and Karsten M. Borgwardt. 2011. Weisfeiler-Lehman Graph Kernels. Journal of
Machine Learning Research 12, Sep (2011), 2539–2561.

[24] Michael E Smoot, Keiichiro Ono, Johannes Ruscheinski, Peng-Liang Wang, and
Trey Ideker. 2011. Cytoscape 2.8: new features for data integration and network
visualization. Bioinformatics 27, 3 (2011), 431–432.

[25] Vladimir Subotic, Steffen Brinkmann, Vladimir Marjanovic, Rosa M. Badia, Jose
Gracia, Christoph Niethammer, Eduard Ayguade, Jesus Labarta, andMateo Valero.
2013. Programmability and portability for exascale: Top down programming
methodology and tools with StarSs. Journal of Computational Science 4, 6 (2013),
450 – 456.

[26] Kozo Sugiyama, Shojiro Tagawa, and Mitsuhiko Toda. 1981. Methods for visual
understanding of hierarchical system structures. IEEE Transactions on Systems,
Man, and Cybernetics 11, 2 (1981), 109–125.

[27] Mahito Sugiyama, M Elisabetta Ghisu, Felipe Llinares-López, and Karsten Borg-
wardt. 2017. graphkernels: R and Python packages for graph comparison. Bioin-
formatics (2017), btx602.

[28] Tatiana Von Landesberger, Arjan Kuijper, Tobias Schreck, Jörn Kohlhammer,
Jarke J van Wijk, J-D Fekete, and Dieter W Fellner. 2011. Visual analysis of large
graphs: state-of-the-art and future research challenges. In Computer graphics
forum, Vol. 30. Wiley Online Library, 1719–1749.

[29] Kyle B Wheeler and Douglas Thain. 2010. Visualizing massively multithreaded
applications with ThreadScope. Concurrency and Computation: Practice and
Experience 22, 1 (2010), 45–67.

[30] Richard M. Yoo, Christopher J. Hughes, Changkyu Kim, Yen-Kuang Chen, and
Christos Kozyrakis. 2013. Locality-aware Task Management for Unstructured
Parallelism: A Quantitative Limit Study. In Proceedings of the Twenty-fifth Annual
ACM Symposium on Parallelism in Algorithms and Architectures. ACM, 315–325.

[31] yWorks GmBh. 2015. yEd Graph Editor. (2015). http://www.yworks.com/en/
products_yed_about.html. Accessed 10 April 2015.

[32] Dror Zernik, Marc Snir, and Dalia Malki. 1992. Using visualization tools to
understand concurrency. IEEE Software 9, 3 (1992), 87–92.

8

 http://graphml.graphdrawing.org/primer/graphml-primer.html
https://www.imagemagick.org
https://www.imagemagick.org
http://cgi.cs.arizona.edu/~kisaacs/STAR/
http://cgi.cs.arizona.edu/~kisaacs/STAR/
https://doi.org/10.5281/zenodo.439351
https://doi.org/10.5281/zenodo.439355
https://doi.org/10.5281/zenodo.836838
https://doi.org/10.5281/zenodo.836838
http://www.yworks.com/en/products_yed_about.html
http://www.yworks.com/en/products_yed_about.html

	Abstract
	1 Introduction
	2 Background on Grain Graphs
	2.1 Structure
	2.2 Diagnosing problems

	3 Grain Graph Aggregation Method
	4 Prototype Implementation
	5 Evaluation
	6 Related Work
	7 Conclusion
	References

