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ABSTRACT
Grain graphs simplify OpenMP performance analysis by vi-
sualizing performance problems from a predictable program-
mer perspective. However, grain graphs with tens of thou-
sands of grains – task and parallel for-loop chunk instances
– take a long time to lay out hierarchically and to navi-
gate. The paper presents aggregation and filtering meth-
ods that exploit the grain graph’s hierarchical structure and
problem-pointing precision to group related grains together
into summary nodes and filter out non-problematic grains.
Aggregated and filtered grain graphs are not only laid out
quicker but also enable programmers to progressively nav-
igate the program structure and converge faster on prob-
lematic sections. This further enhances the productivity of
grain graph based performance analysis.

1. INTRODUCTION
While it is relatively quick in OpenMP [1] – a standard-

ized, widely-used API – to create working parallel programs,
optimizing them for high performance is a struggle for pro-
grammers due to poor support in visualizing performance
problems. Existing visualizations [2–6] predominantly show
program execution from a runtime system or thread cen-
tric perspective that is unpredictable and disconnected from
the fork-join progression expected by programmers. To cope
with the semantic gap, programmers rely on experts or trial-
and-error tuning methods for performance.

Grain graphs [7] is a recent visualization method that sim-
plifies OpenMP performance analysis by pin-pointing per-
formance problems from a predictable programmer perspec-
tive. Structurally, the grain graph is a directed acyclic graph
(DAG) that captures the order of creation and synchro-
nization between grains – task and parallel for-loop chunk
instances – in the executed program. The grain graph is
laid out hierarchically using the Sugiyama layout [8] to vi-
sualize the fork-join progression of the program expected
by programmers. Performance crippling conditions such as
work inflation, inadequate parallelism, and low paralleliza-
tion benefit are directly shown on the grain graph, along
with precise links to problem areas in source code, enabling
programmers to perform optimizations productively without
relying on experts or trial-and-error tuning.

Grain graphs for OpenMP programs that expose abun-
dant, fine-grained parallelism are huge in size containing
tens of thousands of grains. The sheer size increases the
time to lay the graph out to several minutes, impeding pro-
ductivity. The long layout time is a direct consequence of
the Sugiyama layout algorithm whose worst-case time com-

plexity increases with the size of the graph. Navigating the
laid out huge grain graph is also time consuming since pro-
grammers cannot understand program structure and per-
formance problems at the first glimpse and are required to
attentively zoom and pan to different sections of the visu-
alization, while mentally remembering the characteristics of
visited sections. Moreover, a powerful graphics workstation
with a large monitor screen is needed to render huge grain
graphs responsively.

A promising solution to manage the long layout and navi-
gation times is to reduce the size of huge grain graphs with-
out loss of programmer perspective. Aggregation and fil-
tering are well-known processes to reduce the size of huge
graphs while retaining the overall structure [9]. Aggrega-
tion reduces the size of a graph by collapsing related graph
elements into a single group node that summarizes the at-
tributes of members. Filtering is a process that removes
irrelevant graph elements to bring properties of interest into
sharper focus. Both aggregation and filtering are typically
automatic processes requiring no user interaction.

The paper contributes with aggregation and filtering meth-
ods that make huge grain graphs smaller and more focused
towards performance problems (Section 3). The aggrega-
tion method exploits the hierarchical structure of the grain
graph to group related grains together into summary nodes
while the filtering counterpart removes non-problematic grains
to reduce distractions. Using a simple example, the paper
demonstrates that aggregated and filtered grain graphs are
quicker to lay out and enable programmers to progressively
navigate the program structure and converge faster on prob-
lematic sections. This further enhances the productivity of
grain graph based performance analysis.

Note: Colors are crucial to appreciate grain graphs. Read-
ers are requested to print the paper in color. Optically mag-
nifying feature-rich figures may be required.

2. BACKGROUND
Grain graphs is a visualization method for OpenMP that

connects performance problems to the fork-join program
structure at the resolution of grains – task and parallel
for-loop chunk instances created during execution. Since
programmers readily identify with the fork-join program
structure in terms of grains, problem diagnosis is simplified.
In contrast, existing visualizations complicate diagnosis by
resolving performance problems from a runtime system or
threads perspective that is unfamiliar and unpredictable to
programmers.

A summary of the structure, problem-pointing precision,



and prototype workflow of grain graphs are presented next.

2.1 Structure
The grain graph is a DAG where nodes denote grains

and runtime system operations, and edges denote control-
flow. To maintain a predictable programmer perspective,
the grain graph places parent and child grains in close prox-
imity without timing as a placement constraint as shown in
Figures 1a-b.

The grain graph is laid out hierarchically using Sugiyama
layout [8]. The layout removes cycles, places nodes in layers,
and prevents edge crossings. These features are essential to
depict fork-join control-flow in an uncluttered manner to
programmers.

The original Sugiyama layout algorithm employs dummy
nodes and edges profusely and has a time complexity of
O(|V ||E|log|E|) (where V is the set of vertices, E the set
of edges) and a memory complexity O(|V ||E|), making it
prohibitive for huge graphs. In practice, implementations
employ heuristics such as computation timeouts and relax-
ing edge crossing constraints to manage the high complex-
ity [9, 10]. An improved Sugiyama layout algorithm by Ei-
glsperger et al. [10] reduces the number of dummy nodes and
decreases the time and memory complexities down to linear
limits O(|V |+ |E|log|E|) and O(|V |+ |E|) respectively.

Simple aggregations that reduce the size of the grain graph
without loss of programmer perspective are applied to speedup
layout time as shown in Figures 1c-d. The aggregations
group fork nodes of siblings, fragment nodes of parents, and
book-keeping nodes of parallel for-loop chunks (not shown
for space reasons). Group nodes contain both summarized
and individual performance metrics and properties of mem-
bers. However, the simple aggregations are inadequate to
make the layout time manageable for huge grain graphs,
creating the need for a more powerful aggregation method.

2.2 Pin-pointing problems
Properties and performance of grains measured during

profiling are added as annotations on graph elements. These
include standard metrics such as execution time, critical
path, and memory system behavior such as cache miss ra-
tios.

The graph structure is used to derive metrics that point
to problems per grain. Examples of derived metrics in-
clude work inflation, instantaneous parallelism, paralleliza-
tion benefit, and load imbalance. Derived metrics are also
added as annotations to graph elements.

Some annotations are encoded as visual properties of graph
elements for quick identification as shown in Figure 1e. The
length of a grain is sized proportional to its execution time.
Edges are highlighted in red if they are part of the crit-
ical path. Grains with metric values that cross sensible
thresholds are highlighted with a color that encodes prob-
lem severity. Non-problematic grains are shown dimmed to
help programmers focus on problems. For huge graphs, dim-
ming alone is insufficient to make programmers spot prob-
lematic grains faster since zooming and panning over non-
problematic sections is still required.

2.3 Prototype work-flow
The grain graph visualization method is implemented in

a prototype that uses the MIR profiler [11] to profile per-
grain performance and properties from OpenMP programs.

Profiled data is processed in a post-profiling step using the
igraph [12] R package to construct the grain graph and derive
metrics. The grain graph is stored as a GRAPHML file and
viewed on readily-available, large-scale graph viewers such
as yEd [13] and Cytoscape [14].

The hierarchical laying out of the grain graph is performed
on the graph viewer using its own Sugiyama algorithm im-
plementation. The laying out process repeats every time the
graph is reopened since layout results cannot be saved to
to the standard GRAPHML format. For huge graphs, the
layout process can take several minutes. In yEd and Cy-
toscape, it is unclear if the implementation of the Sugiyama
layout algorithm includes the linear time improvements by
Eiglsperger et al. [10]. We assume this as true since one of
the authors of the improved algorithm, Markus Eiglsperger,
also created yFiles [15], the library used by yEd and Cy-
toscape for laying out graphs hierarchically.

Visual performance analysis begins once the grain graph
is laid out. The grain graph has multiple views with colors
encoding a single problem or property per view. Program-
mers shift views to understand properties or pick problems
to tackle. Problematic grains are readily identified since
they are highlighted and non-problematic grains dimmed.
Clicking on a grain opens up a separate window that shows
its performance and properties.

Problems and structure are typically understood at the
first glimpse in small grain graphs. However, for huge graphs,
programmers are required to zoom and pan attentively to
different sections of the graph to understand structure and
problems, and remember characteristics of visited sections,
as shown in Figure 1f. This process is particularly tiring if
problems are spread out and the workstation executing the
graph viewer program is loaded beyond capacity with work.

3. AGGREGATION AND FILTERING
The aggregation and filtering methods that overcomes the

problem of long layout and navigation times for huge grain
graphs are discussed in the section. First, the aggregation
method that exploits relationships between grains to group
them together is explained. Next, summary performance
metrics and properties derived from aggregated group are
described. This is followed by a discussion on filtering out
non-problematic sections from aggregated grain graphs. Im-
plementation details are summarized in the end.

3.1 Aggregating siblings and families
Siblings and families are natural groups that emerge from

the order of grains captured in the grain graph. Siblings
are grains that share the same parent and synchronize at
the same join point (green and gray grains in Figure 1d).
A family is defined by the parent grain and all its children
(blue, green, and gray grains in Figure 1d).

The aggregation method exploits the hierarchical relation-
ship between siblings and families as shown in Figure 2a.
Child grains are first grouped into sibling groups including
the shared fork and join nodes. A lone child is also added
to sibling group of size one. Next family groups are created
by grouping parent grains and siblings groups. A key obser-
vation is that family groups can be treated as child grains
eligible for grouping as siblings. This enables siblings and
families to be grouped iteratively and hierarchically, with-
out loss of programmer perspective. The size of the grain
graph reduces at every aggregation iteration, eventually to



1 int fib(int n, int d)
2 {
3 if (n < 2)
4 return n;
5 int x, y;
6 if (d < 2) { /*cutoff=2 */
7 #pragma omp task firstprivate(n,d)
8 x = fib(n-1, d+1);
9

10 #pragma omp task firstprivate(n,d)
11 y = fib(n-2, d+1);
12

13 #pragma omp taskwait
14 } else {
15 x = fib_seq(n-1);
16 y = fib_seq(n-2);
17 }
18 return x + y;
19 }

31 #pragma omp parallel
32 #pragma omp single
33 fib(2, 0); /*n=2*/

(a) (b) (c) (d) (e) (f)

Figure 1: Grain graph of the task-based Fibonacci program. (a) Source code. (b) Grain graph for small
input (n=2, cutoff=2). (c-d) Simple aggregations. (e) Highlighting problems. (f) Huge grain graph (top) for
test input (n=45, cutoff=12). Graph has 8192 grains. Inset (below) zooms into graph at magnification 60X.

just one root group node in the end.
The algorithm used to iteratively aggregate siblings and

families to produce the aggregated grain graph is not shown
for space reasons but explained briefly next. In every itera-
tion, the algorithm begins by grouping all leaf siblings into
sibling groups. Leaf siblings are siblings that do not have
children. Next, family groups are created by grouping par-
ents whose children belong to sibling groups. Family groups
are marked as leaf siblings and handed over to the next it-
eration. Note that parents whose children are not part of
sibling groups are not eligible for grouping as a family, and
have to wait for a future iteration where all children have
been added to sibling groups. With each iteration, new sib-
ling and family groups are created with grains and groups
as members. Iterations cease when only a singe root group
node remains.

3.2 Group metrics, inferring problems, and
navigation

Metrics and properties are derived for groups immediately
upon their creation in the aggregation process.

Group metrics are derived by combining performance met-
rics of member grains and groups using sensible mathemat-
ical functions. Addition is used to combine execution time.
Memory hierarchy utilization, parallel benefit, and instanta-
neous parallelism are combined using the minimum function.
The maximum function is used to combine load imbalance,
work deviation, and scatter. The combinations ensure that
the most severe problems of members are transferred to the
group.

Group metrics are inferred as problematic if they cross the
same sensible thresholds used to infer problems with grains.
The thresholds, repeated here for convenience, are memory
hierarchy utilization less than two, parallel benefit below
one, load balance greater than one, work deviation greater
than two, instantaneous parallelism less than the number of
cores used to execute the program, and scatter farther than
the number of cores in a CPU socket as likely problems.

The aggregated grain graph is navigated progressively by
opening/closing group nodes to reveal/hide members, as

shown in Figure 2a. Starting with the root group node, pro-
grammers understand the structure by successively opening
groups until leaf siblings are reached. It is not possible to
jump directly to leaf siblings without opening their parent
group hierarchy. As a result, the entire structure of a huge
graph can be understood only by opening all groups at least
once. However, once the structure of a group is known, it
can be closed to avoid panning. This also reduces load on
the graphics workstation significantly. In addition, the sim-
ilarity metric for groups (discussed next) reduces the time
programmers spend in understanding the structure of the
graph.

New properties are derived for groups to aid navigation.

Strength is the number of members in a group encoded as
a tuple (x, y) where x counts only immediate members
and y includes strengths of member groups. The prop-
erty enables programmers to understand how large a
group is without opening it.

Local critical path is the critical path in a group. This
may not necessarily overlap the global critical path
and is calculated using the execution time of member
grains and groups. The property assists programmers
to isolate long-running tasks within a group during
optimization.

Similarity indicates how similar the structure of a group
is in comparison to another group. Similarity is un-
derstood based on graph isomorphism decided by a
Weisfeiler-Lehman graph kernel [16]. The structure of
member groups is considered while deciding similar-
ity. The property enables programmers to understand
structure without opening similar groups.

Local critical path and similarity properties are computed
on demand during navigation since they are prohibitively
expensive to calculate for each group created during aggre-
gation.

Group metrics and properties are added as annotations
and encoded as visual properties, similar to grains. Group
nodes are shown as rectangles with rounded corners. All
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Figure 2: Aggregated and filtered grain graph of Fibonacci program for test input (n=45, cutoff=12) (a)
Aggregated graph. Opened groups are colored white and unopened yellow. In the zoomed inset (right), outer
group is a family group, inner a sibling group (b) Filtered graph. Non-problematic sections are replaced by
fast-forward edges shown thick in the zoomed inset (right). The exact position of the selected group (in blue)
is pin-pointed on the aggregated graph to orient programmers.

group nodes are equally sized and their fill color typically en-
codes the severity of the problem. A tooltip (textbox shown
when the mouse pointer is hovered on a visual element) in
the context of a group node shows its strength. Borders of
group nodes on the global critical path are red whereas those
on the local critical path are colored orange.

3.3 Filtering non-problematic sections
As mentioned earlier, the grain graph aids programmers

to quickly identify problems by dimming non-problematic
grains in problem views. However, dimming does not re-
move the need to pan and zoom huge graphs to identify
problematic sections. In addition, dimmed grains equally
load the graphics workstation as non-dimmed grains.

Filtering improves over dimming by completely removing
non-problematic groups in the aggregated grain graph as
shown in Figure 2b. To prevent discontinuity in the graph
structure, removed group nodes are replaced with a spe-
cial edge called a fast-forward edge. Successive fast-forward
edges are reduced to a single edge. This enables program-
mers to converge to problematic grains without having to
go through non-problematic sections first. The load on the
graphics workstation is reduced since non-problematic sec-
tions are not rendered.

Filtering changes the structure of the grain graph spe-
cific to the problem. As a result, non-problematic groups
removed in one problem view can appear in other problem
views where they are inferred as problematic. The changing
structure can disorient programmers when shifting views to
pick out problems to solve. To orient programmers firmly,
the location of a selected group in a problem view is high-
lighted on a separate view that shows the non-filtered but
aggregated grain graph, as shown in Figure 2b. The orien-
tation is crucial to maintain the programmers perspective
that is core to the grain graphs approach.

3.4 Implementation
The aggregation and filtering methods are implemented

using igraph within post-profiling processes of the proto-
type used to evaluate grain graphs. The similarity property
of groups is calculated using a fast, third-party implemen-
tation [17] of the Weisfeiler-Lehman graph kernel.

4. RELATED WORK
Review of related work is kept short for space reasons.
To the best of the author’s knowledge, none of the DAG

visualization methods [18–23] for performance analysis of
parallel programs written in OpenMP or similar high-level
interfaces provide graph aggregation and filtering to manage
huge graphs.

Consult the grain graphs debut paper [7] for limitations
and a detailed comparison of grains graphs against related
visualization methods.

5. CONCLUSION
The paper presented on-going effort to incorporate aggre-

gation and filtering features in grain graphs. Future work
includes refinement and formal analysis of aggregation and
filtering methods, more compelling writing, and a thorough
evaluation of the efficiency in solving performance problems
in standard OpenMP programs.
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