
 REFERENCE: TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 1/115

TULIPP
H2020-ICT-O4-2015

Grant Agreement n° 688403

D1.2: Reference Platform v2

Authors

Organization Participant

THALES Philippe Millet

SUNDANCE Flemming Christensen

IOSB Igor Tchouchenkov

HIPPEROS Antonio Paolillo

NTNU Magnus Jahre

TUD Lester Kalms

SYNECTIVE Magnus Peterson

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 2/115

Copyright TULIPP CONSORTIUM

Page 2 of 115

Reviewers

Organization Participant

NTNU Magnus Jahre

IOSB
Igor Tchouchenkov

Boitumelo Ruf

Sundance
Fatima Kishwar

Graeme Parker

Efficient Innovation
Carlota Pons

Fabien Marty

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 3/115

Copyright TULIPP CONSORTIUM

Page 3 of 115

Document Description

Deliverable number D1.2

Deliverable title Reference Platform v2

Work Package WP1

Deliverable nature Report

Dissemination level Public

Contractual delivery date 2017-10-01

Actual delivery 2018-05-16

Version 1.2.5

 Written by Approved by

Name

Signature

Philippe Millet

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 4/115

Copyright TULIPP CONSORTIUM

Page 4 of 115

Version history

Version Date Description

1.0 2018-01-31 Initial version

1.2.5 2018.05.16 Final version

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 5/115

Copyright TULIPP CONSORTIUM

Page 5 of 115

Executive Summary

This deliverable presents the current progress towards defining the reference platform. It is the second

version of a document that presents the reference platform. In such it extends the first document

going towards the final handbook of the starter kit presented in D1.1.

D1.2 must be seen as the first version of the final D1.3 document, therefore from this version to the

final one, some parts will be added and some other parts will be improved and extended. More

information will be given e.g. more interfaces or more components will be explained and reviewed.

While D1.2 explains the methodology to select and improve the guidelines, D1.3 will reference them.

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 6/115

Copyright TULIPP CONSORTIUM

Page 6 of 115

Table of Contents
1 INTRODUCTION .. 11

1.1 Towards the TULIPP handbook ... 12

1.2 The Functionality ... 13

1.3 The Trade-offs.. 14

1.4 The Need for Efficiency .. 16

1.5 Standardization .. 18

2.1 Methodology to create guidelines... 23

2.2 Methodology to select guidelines ... 27

2.2.1 STEP 1: the Guideline Quality Assurance Board ... 27

2.2.2 STEP 2: Quality Assurance report ... 28

2.2.3 STEP 3: The Guideline Improvement Expert Board .. 28

2.2.4 STEP 4: The guidelines database and guideline references .. 29

3 EMBEDDED COMPUTING CHALLENGES.. 30

3.1 An Image-processing Platform .. 30

3.2 Medical Challenges .. 32

3.3 UAV, Drones Challenges .. 33

3.4 ADAS Challenges .. 35

3.5 Challenges Conclusion ... 37

4 HARDWARE PLATFORMS .. 38

4.1 Hardware constraints from the system point of view ... 38

4.2 General platform architecture ... 38

4.3 Processors .. 39

4.4 System on Chip .. 40

4.5 Processor Modules .. 41

4.5.1 Physical connectors ... 41

4.5.2 System on Module (SoM) .. 42

4.5.3 Embedded System Module (ESM) ... 42

4.5.4 PC/104 ... 43

4.6 Input / Output Interfaces... 43

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 7/115

Copyright TULIPP CONSORTIUM

Page 7 of 115

4.6.1 Camera interfaces ... 43

4.6.2 Display interfaces .. 43

4.6.3 Hardware interconnect Protocols ... 44

4.7 Scalability of the compute architecture .. 44

5 OPERATING SYSTEM & LIBRARIES .. 45

5.1 Low memory footprint .. 45

5.2 Scheduling policies .. 45

5.3 Managing hard real-time constraints .. 46

5.4 Choosing application programming interfaces .. 46

6 STRUCTURED PERFORMANCE ANALYSIS: MEETING EMBEDDED IMAGE PROCESSING APPLICATION

REQUIREMENTS WITH HIGH PRODUCTIVITY .. 47

6.1 The generic development process ... 48

6.2 Selecting performance analysis tools .. 50

6.3 Programming model selection... 50

6.4 Evaluating performance analysis tools .. 52

6.5 STHEM: The TULIPP performance analysis tools ... 53

6.6 Tool-chain Standards ... 56

7 PLATFORM, STANDARDS and STANDARDISATION ... 57

7.1 The hardware platform choice .. 57

7.2 The operating system implementation choices .. 57

7.3 The toolchain choices .. 58

8 CONCLUSION .. 59

9 APPENDIX: THE GUIDELINES DATABASE ... 60

9.1 Adjust the Algorithm to the Underlying Architecture ... 60

9.2 Choosing a Real-time Operating System ... 62

9.3 Do Not Turn the FPGA Device On and Off too Frequently .. 64

9.4 Move Data Processing as Close to the Sensor as Possible... 65

9.5 Should I Use a FPGA or an ASIC? ... 67

9.6 Reordering Loops can Reduce Bandwidth Requirements ... 69

9.7 Upgrading to newer parts/FPGA architectures ... 70

9.8 Optimize nested loops with early exit by measuring the number of unconditional iterations 72

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 8/115

Copyright TULIPP CONSORTIUM

Page 8 of 115

9.9 Source Code Organization ... 74

9.10 Automating the Toolchain ... 75

9.11 Timestamp ADC samples promptly ... 76

9.12 Save implementation time by delegating customizations to the hardware vendor 77

9.13 Selecting PSU to supply the chosen hardware .. 79

9.14 Manage to accelerate streaming capable functions in a single accelerators 80

9.15 Integrating your image processing HDL code with the platform ... 82

9.16 Use hil testing rather than wait for a final hardware .. 83

9.17 How to get EMC2 Board communicate with an UAV .. 84

9.18 Use an external constant voltage reference for the ADC instead of the internal reference based on

positive supply voltage (VDD) ... 87

9.19 Isolate designs to low-power domains to reduce power consumption .. 88

9.20 Beware the parameters of external data/clocking when testing or debugging 89

9.21 Make sure to access streamed data from within accelerated function .. 90

9.22 Writing for HW .. 92

9.23 Remove recursion when aiming to parallelize code .. 94

9.24 How to optimize sgm for GPGPU ... 96

9.25 Save Intermediate Storage with Dataflow Regions ... 97

9.26 When to use conditional branching .. 99

9.27 Do not use floating point computation on FPGA ... 100

9.28 Avoid LibTIFF library and use raw image format ... 102

9.29 Use EMVA1288 to compare cameras .. 103

9.30 Low latency image processing over TCP IP data stream .. 104

9.31 Major challengers to integrating hard real time image processing using neural networks in MPSoCs

 105

9.32 Ensure Dataflow by using Inline Sub-functions ... 106

9.33 Data logging using SD Card .. 108

10 REFERENCES ... 111

11 Appendix: Guideline Evaluation Experts .. 114

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 9/115

Copyright TULIPP CONSORTIUM

Page 9 of 115

List of Figures
Figure 1: Example of a guideline ... 21

Figure 2: Instantiating platforms based on guidelines. The two instances are partially compliant with different

subsets of guidelines. .. 22

Figure 3: The workflow to generate and evaluate guidelines that define the platform instance. The critical path is

shown in red.. 23

Figure 4: Guidelines quality improvement process... 29

Figure 5: The typical usage for an embedded image processing platform ... 31

Figure 6: Different obstacles in typical environments of UAVs... 34

Figure 7: Qualitative comparison of GPU and FPGA ... 40

Figure 8: Generic Heterogeneous Hardware Platform ... 47

Figure 9: Generic Development process ... 48

Figure 10: Advantages and Challenges of the SPM and MPM strategies ... 51

Figure 11: The Supporting utilities for Heterogeneous Embedded image processing platforms (STHEM) 54

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 10/115

Copyright TULIPP CONSORTIUM

Page 10 of 115

List of Tables
Table 1: Energy-efficient Embedded image processing applications challenges .. 37

Table 2: Limitations of the main TULIPP-PI1 components and needed utilities to alleviate the limitations 55

Table 3: Tulipp Expertise Panel ... 115

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 11/115

Copyright TULIPP CONSORTIUM

Page 11 of 115

1 INTRODUCTION

Image processing deals with image manipulation, transformation and analysis. This domain takes two-

dimensional data as an input, whose width, height and pixel depth depend on the sensor. The wide

variety of sensors and application types make image processing a complex and deep domain.

The image processing field has already several groups that have been formed with time, all over the

world, to deal with sub-domains but no particular focus has been done on low-power. Even though

the topic is somehow addressed, it has so far not been the main concern.

While writing about low-power, it must be explained what is meant in this document because any

platform might be seen as a low-power platform depending on the domain addressed.

We can also notice that we easily find high-performance targets dedicated to data centres and clouds

at the cost of hundreds of watts. At the other end, in the Internet of Things (IoT) realm we can find

low-power targets, for less than a watt, but they drastically lack for performance. Yet this is where the

“big players” (like Google, Facebook, Amazon, Intel) are today: either high performance computing

with higher energy-consumption or ultralow-energy consumption but at the cost of computing

performances.

There is nearly a desert in the middle, when one needs a good trade-off between decent-performances

and low-enough-power i.e. between 1 watt and 15 watts. We expect this area to develop with the ever

growing needs for ADAS systems, but industries with lower volumes (a few thousand pieces a year)

might not be able to access the technology. For instance, the Xavier SoC from NVidia is so dedicated

to the automotive market and there are so many expectations from the chip manufacturer on this

market that it focuses on major customers and sells the SoC only with a strong support for several

million euros. The same happens with processors dedicated to smart phones as this market is captive,

chips are only sold by millions quantities.

For smaller series of products one needs to find chips that match the processing needs, the price and

the power-consumption. When the target has been chosen, image processing engineers still require a

good knowledge of what can be done to achieve the best possible trade-off for their algorithm

implementation.

The chapter is introducing the goals of the deliverable and explains how to develop an embedded

system for image exploitation in real-time as follows: The first step is to get an algorithm that provide

a functionality that has to be implemented in a product, the second step is to find trade-offs between

the functionality and the physical constraints of the product. When choices have been made, there is

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 12/115

Copyright TULIPP CONSORTIUM

Page 12 of 115

no choice anymore to redesign the platform. This is the kingdom of optimization for everything must

fit and run on the platform at the end.

The main objective of the TULIPP project is to identify the best possible choices for embedded image

processing platforms and initiate a path towards standardisation. To this end, the work shown in this

deliverable is the bases of a book that will help to promote the ideas of the TULIPP project outside the

consortium and leave a legacy after the end of the project. It will strongly express that to build solutions

for the embedded image processing domain, one needs to fully understand the constraints of low- and

medium-volumes (up to thousands of pieces per year) because it strongly limits the freedom of

designers.

1.1 Towards the TULIPP handbook

This deliverable is the first step towards a book that will help engineers to implement such image

processing systems fast, efficient and saving development costs.

The book will be what is presented in this deliverable: a collection of knowledge from experts of several

fields covering the implementation of product using image processing.

The information addresses both experts and beginners. While a beginner will find most of the book

useful, an expert should look at the parts that address topics where he is not an expert. E.g. an expert

in image processing algorithms will have interest in reading the part on hardware choice and operating

system implementation to understand what trade-off he can make on the algorithm to make it easier

to implement, while an expert in operating system will most probably like to read the specificities of

image processing algorithms to understand what services should be developed in the operating

system.

This future book is also aimed at student to learn from the field of embedded image processing which

means computing performance with a limited power budget, or better said power-efficient high-

performance image processing.

This deliverable is the first extract of the knowledge shared and owned within the TULIPP consortium.

We have got agreements and commitment from other projects to cover several chapters of the book

to help us extend the number of topics addressed in the book.

The deliverables D1.2 and D1.3 are two versions of the same document. While D1.2 is a draft document

collecting a part of the knowledge, D1.3 will be an almost finished version of the contribution of the

TULIPP consortium to the final book.

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 13/115

Copyright TULIPP CONSORTIUM

Page 13 of 115

1.2 The Functionality

When starting to develop an application for real-time image processing, one often wonders where to

start with. Such an application has indeed complex and contradicting constraints leading to deal with

challenging compromises.

Having in mind the services that one wants to deliver, it often starts with a proof of concept application

developed on a standard Desktop-PC. The main reason being that then one can concentrate on the

algorithmic parts of the application, taking no care of any other constraints like memory size, power

consumption and even interfaces for input/output signals. At this step the only concern is to have

MatLab or C code giving the expected functional results. This proof of concept shall not even run at

real-time, which means it shall not process the input at the speed of a real-life sensor and can afford

to be much slower. The input data is often taken from a file and can be generated with environmental

simulators or recorded from a real sensor.

This first instance of the code is developed and linked against standard libraries so that the abstraction

level is high enough to play with the parameters of the algorithms only, taking no care of any

optimization.

This first step must really be seen as a step leading to the specifications of the functionalities. A danger

would be to consider this first step as a first implementation of the algorithm on a target. Even though

the code resulting from this step runs on a computer, it is far from being the finale platform of the

product. The constraints are clearly different and the resulting software will also have to be very

different. Developers and managers must clearly understand that the code resulting from this step will

have to be rewritten to fit and run on an embedded system.

Some developers are very keen on using various high-level libraries and development techniques

known only to experts, requiring many years of training. On one hand, this allows them to be very

efficient and faster produce solutions that they can exploit to develop new functionalities and validate

their ideas. Those libraries are often quite complex with many functions, many data structures

representing hundreds of thousands of lines of codes spread over hundreds of files. Even with open

source libraries one has to face the difficulty to reverse engineer them. A wrong idea would be to think

that these libraries should be ported to the embedded system to ease the porting of the application.

At this step, the right word would be “to implement” the application on the target rather than “port”

the application. Practically, the application must be redesigned to rely on the embedded libraries and

operating system. The way to “translate” the application from the functional code to the embedded

code depends strongly on the target itself. The software stack implemented on the target requires

making choices almost as impactful as choices for the hardware architecture.

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 14/115

Copyright TULIPP CONSORTIUM

Page 14 of 115

A practical approach is to keep the two spaces separate: One time for functionality, one time for

implementation on the embedded product.

When the functionalities are satisfying the functional requirements, the main information for the next

step is to be able to extract from the specifications of the algorithm the required computing

performances (e.g. number of operation per seconds, input and output throughput…), reference

stimulation data (sample input data) and reference output data (the results given by the algorithm

from the reference stimulation data).

1.3 The Trade-offs

With a clear view of the required computing performances and the product constraints, one can start

designing the platform.

The first step here is to get an understanding of all the constraints of the product. Some constraints,

like power-consumption, are more obvious for engineers – because it directly impacts the design of

the system – than some others, like the price – because it indirectly impacts the design and, for some

expensive products, less impactful. Therefore, understanding all the consequences of a choice is

crucial. Let’s take the example of a chip, which is one of the most important parts of hardware design.

As hardware design teams are dealing with embedded products, they are often limited by the batteries

life time and so by the power consumption, but even when the product has access to the electrical grid

it is limited by the thermal dissipation of the heat sink, the cabinet and the packaging. Both the power

consumption and the thermal dissipation will limit the type of chip that can fit the system. A short way

to express this goal could be: the “lighter” the chip, the better.

At the other end, the software design teams have more and more functionalities with more complexity

and have to deal with bigger and bigger data sets. There is no other choice for them; everything has to

be implemented on the hardware platform. A hardware that would be unable to run the application

and provide the functionalities would be of no help and would have to be redesigned. Thus, for

software teams, more computing resources means less difficulties to implement the functions, more

available memory means easier access to the data and easier scheduling. A short way to express this

goal could be: the “heavier” the chip, the better.

Project and product line managers have to deal with customers. They want the product to fit the costs

and they need it to be delivered on time. Any delay will cost money and give more time to competitors

to develop the same functionalities on their products. Managers have to take costs into accounts. Costs

are divided into two categories: the Non-Recurrent Costs (NRC) and the Recurrent Costs (RC).

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 15/115

Copyright TULIPP CONSORTIUM

Page 15 of 115

NRCs are costs involved during the development phase of the product. Thus if one needs more time

than ones competitors to develop the same functionalities, the NRC will be higher than the one of the

competitors. Higher NRCs might not be a problem when one develops big series of products, but when

one develops only few pieces a year, one has to take great care of the NRCs and reduce them as much

as possible while it will have a greater impact on the final product price since it has to be divided by

the number of pieces that will be produced. A short way to express this goal could be: the easier to

program the chip, the better.

RCs are costs involved during the production phase of the product. Thus it strongly depends on the

choices made at design time. More expensive components mean higher prices. Higher RCs will always

impact the final product price but unlike the NRC one has to take greater care with larger-series and is

even critical for mass production where each cent saved on a product will lead to millions in gained in

revenue for the company. A short way to express this goal could be: the “cheaper” the chip, the better.

While some of the constraints will lead the hardware designers to prefer domain specific chips

delivering more computing per watt with higher power-efficiency; other constraints would lead them

to choose more general purpose processors because they are easier to program and will help to deliver

faster the product. Some dedicated chips like Field Programmable Gate Arrays (FPGAs) will often offer

higher efficiency at the cost of longer developments and higher component prices. The matter is

further complicated by system software: A more complex chip with a better operating system and

more convenient development tools may result in lower development time than a simpler chip with

less mature system software. So the designer must find the trade-offs that allows for implementation

of the algorithm with corresponding performance at a given price with the thermal or energy budget

that is allowed in the system.

A trade-off does not mean the hardware designer has to find a solution that matches all the

constraints. More than often he has to discuss the constraints and move the thresholds. If the

functionalities cannot all be implemented; check if it is possible to remove some of them or reduce the

effectiveness or the accuracy of the functions within certain margins. Reducing the accuracy from 1%

or 2% might in some case reduce the load from several tens of percentage points and allow for using

smaller and cheaper chips.

For real-time image processing, the main problem is data throughput and memory size. Images are 2D-

data. For colour images, a pixel is often described with a 32-bit word. The total quantity of data to

move between memory layers for each function might be tremendous. The processing element is not

the only one element to be taken into account while designing the system. The whole hardware

architecture must be studied carefully. The memory size, the bus width and the type of IOs are as

important as the processing element. Each hardware element will most likely also give constraints on

other hardware elements and impact the final architecture choices.

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 16/115

Copyright TULIPP CONSORTIUM

Page 16 of 115

1.4 The Need for Efficiency

The first step to select the hardware platform is to know the targeted price. This selection will be done

taking into account the number of products per year. Another primordial factor is the energy budget,

the battery life-time and/or the thermal dissipation. With those two figures, price and energy-budget,

a first selection of targets can be done. The energy budget is often linked with weight while higher

power consumption means more energy storage resulting in heavier batteries. Heavier batteries will

also be bigger and take more volume. Bigger volume and weight will require a redesign of the system.

If the computer is embedded on a flying drone, the additional volume deteriorates flight characteristics

and weight reduces fly time very strong.

The second step is to deal with the needed computation resources. This is not as easy as it seems.

Many years ago, we used to look at the clock frequency to compare General Purpose Processor (GPP)

performance while we were looking at the number of Multiply-Accumulate (MAC) per seconds for

Digital Signal Processors (DSP). DSPs were compared with FPGAs also using MAC/s values while FPGAs

were compared one to another according to the number of Look-Up Tables (LUTs), logical cells and

DSP blocks (a DSP block is an element inside the FPGA that offers multiply and accumulate capabilities

and should not be confused with the DSP processor which is a chip).

With the emergence of multi-core and many-core architectures, the concurrency to access IOs and

memory limits the cores and their computing performance as they have to enter idle states to wait for

data. The characteristics of the chip have to be tested according to each user application profile for

they may use the resources in very different ways. In order to get representative figures and

measurements, one must test the chip with benchmarks representative of the final applications. The

characterisation of the memory bandwidth and the measurement of the performance of the cores for

several basic functions with several data set sizes are a good way to proceed. For instance, one may

test Fast Fourier Transforms (FFTs) with several sizes and check how the core performance will be

affected by the size of the data set while with this kind of function the distance between data increases

with the size of the data set.

Some processors also have accelerators for dedicated basic functions. An example of such an

accelerator is the Streaming SIMD Extension 2 (SSE2) implemented on the Intel processors. An SIMD is

a set of cores processing a Single Instruction on Multiple Data. It means there is one controller that

sends the same instruction to many processing cores. Each core, at each cycle will execute that

instruction with data that are different from the one received by other cores. This kind of processor is

very energy-efficient as the control is reduced to its minimum, but the efficiency requires that the

application can be data-parallelized. There is usually a reduced set of instructions that can be handled

by the processing cores. This kind of accelerator must be used when available because they allow using

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 17/115

Copyright TULIPP CONSORTIUM

Page 17 of 115

all the available computing resources which gives the best possible performances. When one would

only use the general purpose processor he would consider the chip not suitable for the application

while it could actually be if the test were fairly done. Most of the time, the difficulty for using such

accelerators comes from the tools. The hardware often offers new functionalities long before they

have time to be integrated in the tools. When the SSE2 was just implemented on Intel processors, one

had to write assembly code to access the hardware accelerator while today it is taken in charge in

compilers. The same happens today with the Myriad processors which efficiency and best

performances is only available to well-trained programmers.

Another possibility to access the best performance is to use vendor libraries. General Purpose Graphic

Processor Units (GP-GPU) are able to compute almost any kind of function and are extremely parallel.

They are designed to efficiently schedule the memory access so that the cores are waiting as little as

possible. Doing so, they maximize the utilisation of their cores. One way to implement an FFT on these

processors is to program it manually with a dedicated language (CUDA or OpenCL). But the best

efficiency is usually achieved with the library delivered together with the component.

Memory size and memory hierarchy is also an important factor to take into account while designing a

hardware platform. Since one of the main problem for parallelism is data access, the closer the

memory to the core the better. But having memory close to a core does not solve the global problem

of data access and data movement. Because the memory size given to a core will never be enough to

store the complete set of data given to a function for a given application, it is necessary either to have

“big” memory spaces or to be able to process the data as they are streamed out of the sensors.

“Bigger” memory means more possibilities to store the data but at the same time higher latency to

access them and also more power consumption. Streaming at the other end will allow for shorter

latency and lower power consumption, but might not allow some algorithm to be implemented, e.g. if

one needs to compute an average on the complete image to shift the histogram i.e. add or subtract

this value to every single pixel of the image. Then, one needs to be able to store the whole image and

have no choice but to implement a memory big enough for that purpose.

Depending on the criticality of an application, the underlying platform will be totally different. When,

for instance, one needs to be able to master hard real-time deadlines, meaning missing a deadline is

not allowed, one will not enable the cache in the processors. Although the processor cache is meant

to better feed the processor with data and by this means increases the performance of the hardware,

it is also, at the same time, not possible to characterize properly and will result in impossibilities to

know the behaviour of the application at design time. This goes also with the number of cores that are

used on a symmetrical multi-core chip. The need of knowing the behaviour at design-time and ensuring

that this behaviour is the same at run-time, requires composability in the platform. This is not

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 18/115

Copyright TULIPP CONSORTIUM

Page 18 of 115

compatible with current implementations of multi-core processors because cores will have concurrent

access to the memory and make the global application behaviour unpredictable.

On the other hand, both the cache mechanism and the multi-core architecture allow higher average

performance and will be helpful when only the performance matters. They will also allow for higher

energy-efficiency in terms of performance per watt.

So the efficiency one can get from the platform depends highly from the requirements of the

application.

1.5 Standardization

Standards are the key to easier platform integration and wider acceptance and utilisation of a solution.

There are a lot of examples of widely used interfaces (USB, Ethernet, …), used every day and allowing

us to share data and work. However, we might wonder how these standards became so popular.

To spread widely, a standard must fill a need and/or be easy to use. However, it may still fail because

of royalty fees. A good example is HDMI. The format is good and quite widely accepted but with one

needs to pay to implement an HDMI interface. This is how DisplayPort came up. As it is royalty free,

anyone can implement this interface without having to pay. And because of the fees, two standards

are now fighting one another making life difficult during meetings when a computer has to be plugged

to a screen and converters are needed to interface them. Open standards is a good way to avoid this

and it helps to promote and improve a standard because anyone can access it and join the effort of

defining. The drawback is to deal with other companies with other constraints to define the standard

but the benefits of compatibility and lower prices overrides the decision.

Some companies are voluntarily not using standards in order to prevent anyone to connect anything

on the platform. This is for instance the strategy of Apple that wants to keep control of the platform

and do not allow for anyone to connect anything to their computers. Thus they design interfaces and

plugs that are only compatible with other Apple equipment. However, even Apple uses WLAN,

Bluetooth and USB standards as they need to communicate with devices from other companies.

Before starting to envisage the concept of a new standard, one must have a deep look at existing

solutions. There might already exist standards that are almost satisfying the needs. If they would not

fit completely, they might be adapted to fit better new environments.

For instance, let’s have a look at the PCIe standard. There have been several improvements from the

first version in 2003 (v1.0) to the very last proposed specifications in 2017 (v5.0) of this standard to

cope with new needs, new performances and new applications and to use new capacities allowed by

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 19/115

Copyright TULIPP CONSORTIUM

Page 19 of 115

technology improvements. From v1.0 to v5.0, the throughput has been multiplied by about 15 while

improvement was also done to reduce the power consumption during idle periods but not yet to cope

with low-power applications. One expected, still in draft extension of the standard is the Mobile PCIe

specification (M-PCIe) where power consumption would roughly scale with the amount of data

transferred. Rather than creating an ad hoc interconnect that would fit low-energy consumption for

embedded devices, one has first to check if existing standards are evolving towards this goal and

evaluate if they would match the requirements. This is what the TULIPP project evaluates through this

document.

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 20/115

Copyright TULIPP CONSORTIUM

Page 20 of 115

2 THE GUIDELINES:

A path towards standardisation in the low-power image processing system domain

The initial approach was to use the interfaces of the TULIPP platform instance to create a basis for later

standardisation efforts. Although this approach is valid and an interesting starting point (see Section

7), we are concerned that it will not result in a universally applicable standard for low- and medium-

volume image processing systems. The reason is the heavily constrained design environment of these

systems. Image processing applications need to achieve high performance while meeting strict cost,

energy, power and physical size constraints (see Section 1.3 for a detailed discussion). A standard that

does not have sufficient flexibility to meet these constraints for a wide range of applications is doomed

to fail. To reduce the impact of this problem, we came up with the idea of guidelines.

A guideline is an encapsulation of an advice and a recommended implementation method. The advice

captures expert insights in a precise, context-based formulation and orients the follower (the person

reading the advice) towards a goal. The recommended implementation method suggests interfaces

and steps that work well in practice to implement the advice. The guidelines will help a standardisation

body, such as the EMVA, transform the interface-driven description provided by the reference

platform into a viable standard. The guidelines provide a basis the standardisation body can use to

engage in informed discussion with key stakeholders across the European low- and medium-volume

image processing industry. This initiative has already started during the TULIPP project with the setup

of an ecosystem of 20+ stakeholders across Europe; most of them are already members of various

associations like EMVA. Thus, the guidelines provide a necessary context for adapting the interface-

specification of the reference platform into a highly successful European standard.

Both the advice and the recommended implementation methods are supported by theoretical and

experimental evidence that is either gathered within the project or is pre-existing in the community.

The advice in a guideline is essentially inarguable since it is based on proofs and facts. However, it is

not necessary to treat the recommended implementation method as a strict rule. Using alternative

implementation methods or new tools is allowed and encouraged.

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 21/115

Copyright TULIPP CONSORTIUM

Page 21 of 115

· Advice: Exploit both vectorization and multithreading for high performance on multicore

processors with vector units such as the ARM Cortex A9. On these architectures, utilizing all

hardware execution resources is key to achieve high performance [2] [4, 5].

· Recommended implementation method: Use OpenMP. OpenMP is a widely supported parallel

programming API that enables programmers to express vectorization and multithreading

operations concisely using compiler directives. Programmers need not worry about specifying

scheduling and synchronization operations in code. These are handled transparently by the

OpenMP runtime system. See the official OpenMP examples[6] to understand in more detail

about exploiting vectorization and multithreading simultaneously.

Figure 1: Example of a guideline

Figure 1 contains an example of a guideline for obtaining high performance on multicore processors

with vector units.

In the guideline example in Figure 1, the advice orientates the follower towards the goal of achieving

high performance in the specific context of multicore processors with vector units. The advice

advocates simultaneously exploiting all execution resources for higher performance and provides

experimental evidence as support. The recommended implementation method points to OpenMP as

a productive choice and links to usage examples.

Guidelines stem from expert insights in image processing and embedded system domains and cover

performance, power, and productivity aspects. Generation and evaluation of guidelines is discussed in

detail in Sections 2.1 and 2.2.

Guidelines may overlap or exclude one another as a natural consequence of the vast design and

implementation spaces for low power image processing. Overlapping guidelines are those whose

advice are based on the same underlying principle, or those whose recommended implementation

methods are the same. Exclusion occurs when a pair of guidelines point in different but equally

competent directions to reach the same goal.

Guidelines are targeted towards both developers and vendors. Developers conform to the guidelines

by paying attention to the encapsulated advice and considering recommended implementation

methods. Vendors ensure recommended methods are available in their products to attract developers.

If implementing recommended methods is infeasible due to constraints, then developers and vendors

can consider alternative methods.

We call the process in which a vendor identifies or implements recommended methods compliant with

a relevant subset of guidelines as instantiation, as shown in Figure 2. The output of instantiation

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 22/115

Copyright TULIPP CONSORTIUM

Page 22 of 115

process is an instance. The platform instance is an example of instantiation if the project consortium

is considered as a vendor.

Figure 2: Instantiating platforms based on guidelines. The two instances are partially compliant with different subsets of
guidelines.

An instance can be partially compliant or fully compliant with the guidelines. A partially compliant

instance provides alternative methods to implement guidelines, whereas a fully compliant instance

provides only recommended implementation methods for the guidelines it supports. Both instances in

Figure 2 are partially compliant. The platform instance is an example of a fully compliant instance since

it provides only recommended implementation methods for the guidelines it supports.

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 23/115

Copyright TULIPP CONSORTIUM

Page 23 of 115

It is important for vendors to note that an effort to support the complete set of guidelines is not

recommended. Support for all guidelines will likely lead to an over-designed instance that is no longer

relevant to the application and violates hard constraints such as cost and total power consumption.

2.1 Methodology to create guidelines

Figure 3: The workflow to generate and evaluate guidelines that define the platform instance. The critical path is shown in
red.

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 24/115

Copyright TULIPP CONSORTIUM

Page 24 of 115

Figure 3 shows our guideline production workflow. The requirements of the workflow are that it should

(a) generate guidelines for low power image processing, (b) evaluate the guidelines, and (c) be aligned

with all project objectives. As evident from the illustration, the workflow captures project-wide effort

towards a common vision.

We explain the different steps involved in the workflow starting with the critical path next.

1. Image processing and embedded system domain expertise: The workflow starts by

gathering insights from experts in the domains of image processing and embedded

systems. Insights refer to deep, underpinning knowledge that come from experience

and modelling. The expertise required to produce insights is not restricted to the

project partners. External experts such as those in the advisory board can also

contribute with insights. Insights have no restrictions on format and can be expressed

in any enlightening manner. The key areas of interest are low power, high performance,

and high productivity.

Insight: Real-time OS (RTOS) provide determinism often at the cost of performance.

As a running example of the workflow, consider the insight expressed by an embedded systems expert

as a single line of text:

2. Guideline formulation: Gathered insights are analysed and formulated into guidelines. This

involves judging the context and orientation of insights, translating them into advice, and

deciding on a recommended implementation method. Translation is necessary since

guidelines are goal-oriented, precise, and context-based whereas insights have no

restrictions on their format. There is no one-to-one mapping between a guideline and an

insight. Many insights can coalesce to produce a guideline, or a single insight can be fertile

enough to produce several guidelines.

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 25/115

Copyright TULIPP CONSORTIUM

Page 25 of 115

· Advice: Balance between deterministic execution and performance while setting real-

time OS (RTOS) parameters[1].

· Recommended implementation method: Configure the RTOS using vendor suggested

methods[3]. Test and document candidate configurations extensively.

Continuing the running example, the insight is translated into the following guideline:

3. Application development: In this step, guidelines formulated are implemented within the

applications and evaluated for impact. In the context of the project, the applications are the

project applications part of the starter kit. Guidelines are implemented either using

recommended or alternative methods. We assume that interfaces from existing technology

are adequate to implement guidelines, but also recognize that existing interfaces might lack

productivity. In the context of the project, technology to implement guidelines is made

available through the platform instance. Guidelines are evaluated for goal orientation, the

suitability of the recommended implementation method, and arguments for choosing

alternative methods. We expect that all formulated guidelines will be evaluated in one or

more applications since they have a common driving theme – low power high performance

real-time image processing. Once all guidelines are evaluated, the workflow ends.

An excerpt from a possible evaluation of the guideline formulated in the running example could read

as follows:

The medical image processing application missed 20/100 deadlines when the default Linux kernel

4.7.2 provided by Xilinx was used. No deadlines were missed under the HIPPEROS RTOS configured

with the Least Laxity First scheduling policy, but performance was restricted to 8 FPS, well under the

required 24 FPS goal. Enabling multicore execution (SMP) and a hybrid scheduling policy with both

data locality and laxity awareness increased performance to 28 FPS with no deadlines missed – a

clear win for HIPPEROS. We configured HIPPEROS using the HIPPEROS configuration plugin provided

by the project for Xilinx SDSoC 2016.2.

4. Technology development: This is the only step of the workflow that is not on the critical

path. In this step, existing technology is improved to enable productive implementation of

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 26/115

Copyright TULIPP CONSORTIUM

Page 26 of 115

guidelines during the application development step. The stimulus to improve existing

technology comes from application developers in the form of technology improvement

ideas. The improvements aim to increase the productivity of recommended implementation

methods to levels that can compete with alternative methods. When recommended

implementation methods promise high productivity, developers need not waste time

deciding on more productive alternatives. Vendors are more likely to provide recommended

implementation methods in their platforms to gain higher compliance. In the context of the

project, technology improvements are delivered through the platform instance.

 Examples of potential technology improvements include application specific evaluation

boards, high performance library routines and custom IP blocks for image processing, low

power enabling patches to RTOS schedulers, improved performance analysis techniques for

Zynq SoC, workflow tweaks for Xilinx SDSoC etc.

 The HIPPEROS configuration plugin provided by the project for Xilinx SDSoC 2016.2 is the

technology improvement demonstrated in the running example in the previous step.

The workflow is not iterative since there are no feedback paths or cycles. Feedback is unnecessary

since guidelines are based on proofs, facts and expertise. In addition to being feed-forward, the

workflow proceeds in a pipelined manner. Guideline formulation starts once a few insights are

available. While experts are in the process of extracting new insights and guidelines are being

formulated using available insights, application developers continue to build applications to satisfy

requirements using available expertise and interfaces from existing technology. Whenever guidelines

become available, application developers shift to evaluating them and at the same time benefit from

the orientation offered. Technology development starts when application developers realize that

recommended implementation methods in guidelines have lower productivity than alternatives and

present ideas for improvement.

Since the workflow to generate guidelines is explicit, the set of guidelines defined during the project is

not fixed. It can grow continuously by including new guidelines, by evaluating guidelines in new

applications, and by making implementation methods more productive. This enables the outcomes of

the project to have a long-term and far-ranging impact. We envision that the workflow will be

administered beyond the project by the ecosystem of stakeholders created during the project.

As defined through this process, a guideline captures a part of the knowledge corresponding to a very

specific topic through a particular experience. Because of this way to capture guidelines, it might not

be generic enough at its first stage to be applicable to any development.

Therefore, a methodology was defined to measure the general usefulness of the guidelines.

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 27/115

Copyright TULIPP CONSORTIUM

Page 27 of 115

2.2 Methodology to select guidelines

The process of creating new guidelines is not as easy as it might seem from far. The main difficulty is

to issue insightful guidelines that will impact a wide number of developers. While the process for

creating guidelines start from particular practice or issues, a more general and global view of the

problem as well as a higher level of information is required. We defined the following methodology to

derive from the individual experiences gained while developing platforms and applications guidelines

with general usefulness meanings.

Four steps have been defined to review and improve the quality of guidelines: (1) each guideline is

reviewed and (2) a report is written during this review. If the guideline has enough potential to be

added to the guideline database, thanks to the review report, the quality of the guideline is improved

(3) and the guideline is added to the guideline database (4).

2.2.1 STEP 1: the Guideline Quality Assurance Board

To assess the quality of the collection of guidelines, the first step is to identify to whom the guidelines

is intended - e.g. application developer or hardware designer - while this person is the best qualified

one that can assess the insightfulness of the guideline in the utilisation context. Note that there might

be more than one person addressed by a guideline and therefore more than one person that will assess

the quality of the guideline. We refer to this set of persons as the Guideline Quality Assurance Board.

The work package leader of WP1 is in charge of identifying the type of persons addressed by the

guideline and assigns, in collaboration with the partners, the review of the guideline to the best

suitable person in the consortium. When the leader of WP1 cannot identify the type of persons

addressed by the guideline, the executive board of the project will be assigned the task and will decide

to whom the guideline is addressed or if the guideline has to be dropped due to a lack of significance.

Each guideline has a specific quality assurance board composed of experts1 from at least one of the
following groups:

• HW designers: dealing with the design of the hardware platform, the components choices and
the interfaces according to system requirements.

• OS designers: dealing with the operating system design and development facing the need to
bring standard APIs for applications and making the OS work on the hardware platform while
bringing the application the means to efficiently control the hardware behaviour.

1 Note that a single person can have expertise in multiple areas and therefore fill different roles in the guideline
evaluation board. However, an expert is always given a designated area to focus on when evaluating a guideline
to ensure that all aspects of the guideline are fully addressed.

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 28/115

Copyright TULIPP CONSORTIUM

Page 28 of 115

• Toolchain designers: dealing with the application developers. They must bring a
comprehensive tool that allows the application designer to efficiently map the application on
the hardware.

• Application developers: knowing the algorithms behind an application and having the ability to
develop the code on the chosen hardware. They understand the complete stack and can make
use of the tool to develop faster the application.

• System architect: dealing with the whole system definition from the definition of the
constraints that comes from the final product, having in mind the targeted price of the solution
and able to understand integration issues that come with any choice from the other four
groups.

• The current list of experts is provided in Appendix 11 – Guidelines evaluation experts.

2.2.2 STEP 2: Quality Assurance report

The assessment will lead to a quality assurance report that will assess the quality of the guidelines.

The report has several goals and will address them all:

• It identifies the type of person to whom the guideline is intended
• It identifies the expertise domains required to write the guideline
• It points out the parts of the guidelines that are e.g. too restrictive or too use-case specific.
• It identifies the parts of the handbook (and also D1.3) that refer to the given guideline
• It identifies the work done in the project that is benefit from the guideline

We rely on the wiki to write the quality assurance report

The outcome of the evaluation is a decision on if the guideline has sufficient quality to become part of
the TULIPP guideline database.

2.2.3 STEP 3: The Guideline Improvement Expert Board

If the guideline is not of sufficient quality, the quality assurance board will assign an expert of the topic
addressed by the guideline. The expert will be in charge of taking the comments into account and will
improve the guideline quality.

There might be more than one domain of expertise and therefore more than one expert required. We
refer to this group of expert as the guideline improvement expert board.

When the board is composed of more than one expert, one of them will be assigned as the leader of
the guideline evolution and will be responsible for integration of the contributions of others.

When the board is convinced that the guideline has reached sufficient quality, it is provided to the
guideline quality assurance board for a new assessment.

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 29/115

Copyright TULIPP CONSORTIUM

Page 29 of 115

2.2.4 STEP 4: The guidelines database and guideline references

When the guideline quality is improved, it is then integrated to the final guidelines database that comes
together with the starter kit.

Following the evaluation report, the final handbook but also some of the project deliverables will be
updated with references to corresponding guidelines. This applies mainly to D1.3 and the final review
report D7.2.

Figure 4: Guidelines quality improvement process

Compose the
guideline

evaluation board
with experts

from the
consortium

Produce the
evaluation

report

Rework the
guideline to
improve its

quality following
the evaluation

report

Reference the
guideline in the
book and in the

workpackages of
the project

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 30/115

Copyright TULIPP CONSORTIUM

Page 30 of 115

3 EMBEDDED COMPUTING CHALLENGES

Embedded computing refers to a computing solution implemented inside a larger object which primary

function is not to compute. The object is often mobile, often has to process data from sensors with

real-time computing constraints, and often has no direct, or limited, access to any server or bigger

computing infrastructures.

Such embedded systems bring functions like control and automation to devices in common use today

like mobile phones, washing machines, cameras, peacemakers, TV, alarm clock, GPS… It is evaluated

that 98% of all microprocessors are manufactured as components of embedded systems. [Barr,

Michael (1/08/2009) “Real men program in C”. Embedded Systems Design. TechInsights (United

Business Media) p.2].

Even though the spectrum of embedded computing solutions is very wide – from a watch to an aircraft

computing system – common characteristics and concerns can still be found when comparing typical

embedded computers to general-purpose ones. We can notice that embedded solutions are always

fighting with small or highly constrained volume, weight constraints and reduced power consumption

or heat dissipation. This is referred as SWaP (Size, Weight and Power) constraints.

These constraints have drastic impact on the computer architecture. The whole computing solution

being limited, including the processor capabilities, the memories sizes (RAM as well as flash memory).

The storage capabilities are also limited; there is often no hard drive. There is almost always links to

sensors and actuators. When the device has access to a network, the basic functions of the device can

be extended over the network like e.g. the Google GPS application on Android mobile phones using

the network servers to compute the road.

3.1 An Image-processing Platform

In the general view, an image-processing platform is composed of a hardware device on top of which

low-level software is implemented to operate the hardware (e.g. an operating system and application

domain libraries) and a set of tools, generally called a tool-chain, must also be available to develop

applications.

Such an image-processing platform is dedicated at processing images out of one or several sensors, a

sensor being a camera or camera-like device on most of the applications. Through dedicated algorithm,

higher-level of information will be extracted from the image. This result might be used in two ways:

(1) to produce actions or (2) to output enhanced information with the image.

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 31/115

Copyright TULIPP CONSORTIUM

Page 31 of 115

Since the sensor outputs frames at a given rate, the platform must be able to process images at the

same rate not to lose any information. When the result of the computation is not linked to any safety

issue, it might be allowed to lose some of the frames but anyway, for the information to have any

meaning, the system must be designed to not lose any frame and thus be real-time. Real-time-

processing means the system will process the data at the same pace it is produced.

Figure 5: The typical usage for an embedded image processing platform

To achieve this, a holistic view of the system is required so as to achieve the best power efficiency from

inevitably highly heterogeneous hardware since the more dedicated the hardware, the better the

power efficiency.

This heterogeneity has a cost. While being able to compute more pixels for a given power budget, the

programmer loses from genericity and thus programmability and versatility. This means often

dedicated programming languages or restricted APIs. Getting the API as close as possible to known and

standard APIs eases the learning curve.

When a system gets several computing units, the programmer also has to take into account the

scheduling of the tasks on the units and the data transfers between the units. This design step highly

benefit from an operating system.

With a power-aware tool chain, the application designer can check, for each mapping of the application

tasks on the hardware resources, the impact on power consumption. He or she can thus schedule the

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 32/115

Copyright TULIPP CONSORTIUM

Page 32 of 115

processing chain to optimize both the performance and the required energy. The tool chain would rely

on the low-power real-time operating system specifically designed to fit in the small memory sizes of

embedded devices. The operating system would come with an optimized implementation of necessary

set of common image processing libraries and allows a seamless scheduling of the application on the

hardware chips.

3.2 Medical Challenges

As defined by the physicians, Medicine is an art based on science. Doctors have to diagnose, to make

prognosis and to take decisions based partly on protocols and scientific examination of the patient.

The difficulties they face are mostly to be able to understand what’s going wrong with only partial

information of a human being. The human body is such a complex system that it requires a lot of

practice and experience for doctors to deal with it.

Even if medicine is an art, it is a highly technical domain. With always improving technology, the

medical staff can benefit from always more accurate measurement and imagery.

Medical imaging is the visualization of body parts, organs, tissues or cells for clinical diagnosis and

preoperative imaging. The global medical image processing market is about $15 billion a year. The

imaging techniques used in medical devices include a variety of modern equipment in the field of

optical imaging, nuclear imaging, radiology and other image-guided intervention. The radiological

method, or x-ray imaging, renders anatomical and physiological images of the human body at a very

high spatial and temporal resolution.

Imagery is one of the keys to improve accuracy of diagnosis and reduce the time spent to cure patients.

It also allows for faster surgery, smaller cuts in the body and faster patient recovery. All these

improvements allow reducing the costs to cure, which is a priority for insurance companies and

governments.

X-ray instruments are highly relevant to a significant part of the market share, in particular through

the Mobile C-Arm, which is a perfect example of a medical system that improves surgical efficiency. In

real time, during an operation, this device displays a view of the inside of a patient’s body, allowing

the surgeon to make small incisions rather than larger cuts and to target the region with greater

accuracy. This leads to faster recovery times and lower risks of hospital-acquired infection. The

drawback of this is the radiation dose: 30 times what we receive from our natural surroundings each

day. This radiation is received not only by the patient but also by the medical staff, week in, week out.

The fact this device takes pictures continuously, implies x-rays are going through the patient

continuously. Since x-rays cannot be narrowed to the zone of interest, the radiation goes not only on

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 33/115

Copyright TULIPP CONSORTIUM

Page 33 of 115

the body part under operation but also to the whole body of the patient and to the medical staff

around the patient.

While the x-ray sensor is very sensitive, lowering the emission dose increases the level of noise on the

pictures, making it unreadable. This can be corrected with proper processing.

From a regulatory point of view, the radiation that the patient is exposed to must have a specific

purpose. Thus, each photon that passes through the patient and is received by the sensor must be

delivered to the practitioner; no frame should ever be lost. This brings about the need to manage side

by side strong real-time constraints and high-performance computing.

We managed to lower the radiation dose by 75% and restore the original quality of the picture thanks

to specific noise reduction algorithms running on high-end PCs. However, this is unfortunately not

convenient when size and mobility matter, such as in a confined environment like an operating theatre,

crowded with staff and equipment.

Yet by providing the computing power of a standard Intel core-i7 PC in a device the size of a

smartphone, TULIPP makes it possible to lower the radiation dose while maintaining picture quality.

3.3 UAV, Drones Challenges

Small unmanned aerial vehicles (UAVs) enter in more and more applications like surveillance and

rescue, video production, logistics, research, etc.

The usage of such systems in the entertainment domain is growing especially fast. This development

is boosted by the constantly rising commercial market for small UAVs providing broad accessibility,

diversity and low costs. Essential enhancements to UAV usage are expected from improvement to their

capabilities; perception and intelligent evaluation of the environment make many new applications

possible. But more intelligence means more computing power which in turns means more weight and

energy consumption. These are however very limited for small UAVs.

As always, each technology comes along with drawbacks and potential for abuse and this is in

particular true for UAVs. With the growing number of UAVs, the number of crashes caused by

malfunction or maloperation also increases. In the worst case it might cause damages to people, goods

and infrastructure. Furthermore, with the broad availability and low cost aspect of UAVs, a common

and unforeseeable use (and misuse as well) of this technology is expected in the private sector.

UAVs with automatic collision avoidance will help to reduce those risks.

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 34/115

Copyright TULIPP CONSORTIUM

Page 34 of 115

The UAV use case in TULIPP deals with estimation of depth from two images produced by stereo

cameras in order to detect objects and to avoid a collision in further steps. There already exist a lot of

algorithms for estimating depth or distance range from different sensors for collision avoidance. In

contrast to laser scanners, which are quite robust but expensive, stereo cameras weigh less and are

much cheaper. In TULIPP, we focus on user friendly and adjustable depth-map generation which can be

used easily for object detection and collision avoidance. While implemented on UAVs, the technology

is easily portable for other application on other vehicles and particularly cars.

Obstacle detection is needed to avoid collisions with motionless or moving obstacles on the flight lane

and is indispensable for autonomous flight. Most of the small UAVs fly with velocities up to 60 km/h

(10 m/s), but some of them can fly with velocities up to 180 km/h (30 m/s) and even more. The

stopping distance is strongly dependent from the velocity, the type of the UAV and the payload. With

the “usually” velocity of about 30 km/h of a common type of “multicopter”, the stopping distance is

less than 5 metres, but with more extreme UAVs it can be up to 50 metres. The size of a dangerous

obstacle is usually over 5 cm (Figure 6 a), but in some cases obstacles with sizes of as less as 2 mm,

more difficult to detect, can also be dangerous (Figure 6 b-c).

a. b. c.

Figure 6: Different obstacles in typical environments of UAVs

The use case solution “collision avoidance” must support the following functions:

1. Real-time pictures collection by two cameras and additionally pictures synchronization of both

pictures.

2. Real-time stereo depth map computation and distance measure to object in flight path.

3. Getting the current position and flying route from UAV control unit.

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 35/115

Copyright TULIPP CONSORTIUM

Page 35 of 115

4. Detection of objects which are on the current air route of the UAV and can cause a collision.

The relevance of object is dependent on the distance to the object, velocity of the fly and sizes

of the object.

5. Calculation of a new safe (free from obstacles) air route taking into account inaccuracies of the

computed depth information and possible variations of the UAV from the planned trajectory.

6. Transfer of the new route to the UAV control unit.

All these heterogeneous functions must work in real time, and the TULIPP solution ensures it by its good

balance of weight, performance and power consumption.

3.4 ADAS Challenges

Advanced driver-assistance systems (ADAS) while helping the driver to focus on what’s important on

the road are developing at a very fast pace. Sustained by the now ready, available and good-enough

technology, devices are embedding more and more intelligence to analyse the driver and its

environment and might even act and control the car in case of danger.

Since this technology saves lives, it is strongly supported by governments and insurance companies for

it will not only save people but reduce insurance costs, infrastructure damages and medical care to

injured people.

Having more electronic devices in a car has also drawbacks leading to big challenges. The first challenge

is the power consumption. With more electronics, more power in drained to feed the chips and this

becomes even worth when more computation and ‘bigger’ processors are required.

A second challenge is the number of sensor that is also increasing at a fast peace. More cameras are

going to be implemented to understand the whole environment of the car but also to interpret the

behaviour of the passengers and to oversee the driver’s actions. Images will also be linked with other

sensors in the car and sensor fusion algorithms will be required for the car to get a full understanding

of the situation and take the right decision.

This second challenge also comes with a price challenge. The technology is yet developed on high-end

cars, but comes fast after only few years to the consumer market. If the target price of the first version

is not a problem, its implementation on regular cars must be as cheap as possible. This market is the

real final goal while this is where the highest return on Invest is expected.

A third challenge is the ability to foresee situations before they are actually encountered. To this goal,

the car must be able to predict the behaviours of the other cars. This can be achieved by

communicating cars but, since the traffic is also shared with legacy cars, it must also rely on advanced

techniques to analyse the behaviour from what the car sees, just like humans do. Humans do learn

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 36/115

Copyright TULIPP CONSORTIUM

Page 36 of 115

during many years after their driving licence exam to be able to anticipate the behaviours of others.

The cars will also have to develop learning capabilities.

All this pushes the technology to develop more image processing chips and algorithms, but also the

ability to interpret the image, not only with former processing algorithms, but also with higher level of

perception like what is today developed through neural networks.

The demand for more computing power at a reduced power budget, or better said a higher processing

efficiency, and cost-effective solutions are crucial for this market to develop.

By 2030, the total price of electronics should reach 50% of the price of the car, compared to about 30%

today (source : Statista, Microvision 2016, https://www.slideshare.net/MicroVision/mems-and-

sensors-in-automotive-applications-on-the-road-to-autonomous-vehicles-hud-and-adas). The market

is improving fast for more automation is requested and this proportion should grow even more within

the next 20+ years and the emergence of totally autonomous cars. The sensors will be a set of cameras,

some of them checking the road at the front, rear and sides for collision avoidance with other cars,

bicycles, pedestrians, etc and for understanding the structure of the road. The car will have to detect

the signs and adapt the speed not only to the signs but also to the situation. The cameras will also be

used for odometry - i.e. measurement of the position of the car on the track - and to compute the

speed of the car. Some cameras will also be implemented in the car to check the driver health and

awareness. In addition to the cameras, other sensors might be added, like LIDAR on top of the car to

get a 3D understanding of the environment of the car, radar at front and rear of the car to check the

distance and relative speed with other cars at relatively far distances, odometry system on the wheels

will allow the car to know the distance travelled by the car, ultrasonic sensors will allow the car to

compute near distances with obstacles, and GPS will also be used to get the positioning of the car.

The sensors are somehow redundant to achieve the best possible accuracy and allow for measurement

in all possible climatic conditions while some sensors might become ineffective with snow or rain. For

instance, Electro-Optical (EO) cameras will not give any information with total darkness or with fog.

One of the near challenges is to be able to extract information about the objects around the car from

a stream and to be able to extract this information at the same rate as the video. The utilisation of

advanced processing like Viola & Jones classifier or Convolutional Neural Networks is one of the most

important challenges of the coming 5 years.

https://www.slideshare.net/MicroVision/mems-and-sensors-in-automotive-applications-on-the-road-to-autonomous-vehicles-hud-and-adas
https://www.slideshare.net/MicroVision/mems-and-sensors-in-automotive-applications-on-the-road-to-autonomous-vehicles-hud-and-adas

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 37/115

Copyright TULIPP CONSORTIUM

Page 37 of 115

3.5 Challenges Conclusion

The challenges are summarised in the following table. More and more processing is required to process

more and more sensors with always higher quality, bigger picture sizes. At the same time always higher

level of image interpretation is required.

Type Challenge

Sensors More sensors to capture the whole environment.
More cameras with better quality and bigger image sizes

Algorithms More complex, requiring more processing from the hardware.
More information will be extracted from the images.
More intelligence from the images and from other sources of information (other

kind of sensors, communications between drones or cars…)

Energy The energy shall ideally remain constant. While this might not be possible, it must

be mastered as more energy means bigger batteries with higher costs and weight.

Mastering the power-budget means much higher processing-efficiency is required.

Development
Costs

Development costs must be as low as possible and time-to-market as short as
possible.
To achieve this, the development must rely on standard libraries and APIs.
An operating system is required to capitalize on the implementation of optimized
power-efficient libraries based on standard APIs.

Customer
Price

The markets addressed by TULIPP are highly competitive. Therefore the final cost
of the solution must be controlled to be able to offer it at a price customers can
afford.

Table 1: Energy-efficient Embedded image processing applications challenges

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 38/115

Copyright TULIPP CONSORTIUM

Page 38 of 115

4 HARDWARE PLATFORMS

Hardware platform refers to the underlying hardware that runs the software. While the software

comprises the operating system, the libraries and the final application, the hardware platform is made

of the board, the processor(s) and the interfaces both to the outside world (i.e. sensors, display, inputs

and outputs in general) and between the components on the board itself.

4.1 Hardware constraints from the system point of view

Being embedded, the hardware part of the system has to fight thoroughly to lower energy

consumption and heat dissipation to its minimum. This allows both to reduce the battery and the heat

sink size, reducing at the same time the size and the weight of the hardware. This general guideline is

necessary and strong, but not sufficient to select each component.

While the hardware has to be integrated in a system with other devices, it must take into account the

interfaces of those devices as well as the necessary throughput and computing performances to cope

with the application of the final product.

While widely used and made to have some stability in the designs, standards may also evolve and any

improvement in any part of the platform should be proposed as a candidate for such an evolution.

4.2 General platform architecture

Anyone has the ability to build any platform but it requires experience to build a platform that fulfils

all the needs and requirements. The difficulty leads in the way one selects the components of the

platform which at the end have to work all together while providing the expected performance for the

given and foreseen development budget.

Added to this, while the products we are focusing on are in an application domain that requires a

relatively long lifetime, technology improvement shall be anticipated to select the components relying

on interfaces that have the best evolution potential and that will last longer.

To this end, we are reviewing the interfaces and components available today and evaluate them from

the point of view of our application domain: low-power image processing with product lifetime of 10

years or more.

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 39/115

Copyright TULIPP CONSORTIUM

Page 39 of 115

This review will lead us to select a reduced number of interfaces that will be part of the platform.

Together with the selection we might also discuss some possible improvements that we would benefit

from and which could be seen as a proposal for standard evolution.

4.3 Processors

While at the core of the architecture, the processor (which nowadays is more a System on Chip with

several to many processors and accelerator cores) has to be chosen carefully.

There are actually two levels or two parts in the evaluation. One part is an evaluation one can do with

the datasheet of the component, the other part can only be achieved with proper tests on the

component.

From the datasheet, one can collect information that will be a first filter for the chips:

- The thermal design power (TDP) which reveals the maximum watts of heat one has to evacuate

off the chip through cooling systems. In the medical use case for instance, the maximal heat

that can be dissipated is 8 watts. The board will have to have a global TDP less than 8 watts,

which implies the sum of the TDP of the components on the board must be less than 8 watts.

- The operating temperature tells one at what temperature the component will be able to work

without any damage to the component. In the ADAS use case, the computer must be able to

work when it’s frozen outside at -50°C, but also when it’s more than 60°C like in deserts. Since

this range of temperature is uncommon, it might drastically reduce the number of

components.

- The power consumption, when multiplied with time, provides the amount of energy the

component needs to work for that given amount of time. This has to be compared with the

battery capacity on the product. The battery size might have to be adapted, which will have

impact on the global weight of the product. This is an important factor for the UAV use case,

while bigger batteries mean more weight. If the solution is too heavy, the UAV might not even

take off.

- From the analysis of the programming language and APIs a programmer can understand how

easy code can be written for a given chip. However, application development on a given target

does not rely only on the way you write code for it, but also on the tools available to deploy,

debug, monitor the application execution on the target. In complex hardware architecture,

one must also have tools to identify and track deadlocks and bus contentions. Programmers

must also have access to a complete documentation, which is too often not available or not

written with all the required details of the inner architecture.

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 40/115

Copyright TULIPP CONSORTIUM

Page 40 of 115

- From the subset of processors that can be extracted from this first selection, experiments will

be necessary to evaluate further to the application needs:

- Real-time: The pace at which the data is sent from the sensor must be handled by the

interconnect to which the chip is connected. The bandwidth, the throughput and the latency

of the interconnect have to be taken into consideration, as well as the capability of the chip to

deal with DMAs and to manage interrupts. For instance, some processors have very deep

pipelines with more than 15 stages that implies latency for every single interrupt.

- Ease of programming: When the development team starts to develop on the target, they can

evaluate if it is hard to manage or not.

In the Figure 7 a qualitative comparison of GPU and FPGA is shown [27]:

Figure 7: Qualitative comparison of GPU and FPGA

The results of the evaluation on the target will strongly depend on the way it is implemented.

4.4 System on Chip

Chips are more and more complex because they embed more and more heterogeneous components

each one being dedicated to a specific kind of processing. Such a system is called a System on Chip

(SoC). An SoC embed at the chip level the complexity that we previously had at the board level. The

devices implemented on a module typically require a high level of inter-connection, like memories and

processor elements.

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 41/115

Copyright TULIPP CONSORTIUM

Page 41 of 115

In D1.3, the following SoCs will be described and discussed, they have been identified in WP2 as good

candidates for low-power image processing:

- NVIDIA Tegra X2

- Xilinx Zynq and Zynq MPSOC ultrascale+

- Intel Myriad 2

4.5 Processor Modules

Together with the rising complexity of chip architectures, many versions in the same family are built

to cover a maximum of application cases. Thus some versions will get, for instance, video codecs, while

some others will get dedicated secured hardware blocks. For SoCs based on FPGAs, several SoCs are

available with different sizes of the reconfigurable matrix.

While this allows the user to select the right chip for his application, it might become difficult for a

board manufacturer to build as many board types as the number of available chips. Therefore, the

solution adopted is often to solder a chip on a smaller board called a module. The module has

standardized interfaces. This allows the board manufacturer to develop carrier boards with different

flavour of input and output interfaces while keeping the same interfaces with the processing module.

Thus one can build his own configuration picking up the carrier board that covers his application needs

and install the processing element that copes with the processing requirements.

This is good for evolution as well while it allows an application designer to change the processing

element if the application requirement changes and more computation is required.

It is also good for standardisation while it allows the processor to evolve while keeping the same

interface with the carrier board. This allows to master the components around the processor and

allows to achieve a better stability of the global system while increasing also its compatibility to the

global system when we follow the evolution of the chips.

There are several approaches but there is not yet a clear emerging standard. Hereunder we list some

of the techniques to assemble such a module and connect it to the main board.

4.5.1 Physical connectors

There is no actual standard to connect such a module to a carrier board. One will actually choose

depending on the constraints of the system. In the following we describe some of the most used

connectors.

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 42/115

Copyright TULIPP CONSORTIUM

Page 42 of 115

Many manufacturers however use a SODIMM connector which allows connecting the module to the

carrier with a limited thickness. For higher mechanical strength, the module can be screwed on the

carrier.

Connectors like Samtec QSH-060-01-H-D-A, which is used by NVidia for its Jetson module, have a better

mechanical strength than SODIMM because it will be located under the board. While SODIMM will be

limited to the size of the edge of the board, this connector will allow having several lines under the

board which allows also more wires between the module and the carrier.

As miniaturisation goes on, more and more modules are shipped with fine pitch board-to-board

connectors that are optimized interconnect solutions for smaller and thinner electronic consumer

products. They are located under the module but are much smaller than the connector used by NVidia.

Except for the form factor, the mechanical constraints and the power supported by the connector,

there is no consideration in term of power efficiency that can help the hardware designer to choose a

connector among others.

4.5.2 System on Module (SoM)

A System on Module is a printed circuit board that integrate the functions of a whole system in a single

board.

A typical use for SoM is to get components that need a high level of interconnectivity on a separate

module. It also allows chips manufacturer to select the other components to produce a consistent and

mastered system that they know will work. One particular example is processors that only tolerate

certain type of DDR memory chips to operate properly.

A SoM is often connected to a carrier board that might integrate several SoMs to form a system with

higher complexity.

Even though there are several ways to connect SoM (like physical connector and protocols), to carrier

boards and it is difficult to select a single standard that would fit them all; since SoM allows for more

mastery of the system and better stability it also reduces the global design costs of the hardware

solution and is therefore an advisable way to design a hardware platform.

4.5.3 Embedded System Module (ESM)

An ESM module typically includes a CPU processor, memory, module-specific I/O interfaces and a

number of basic front I/O connectors. It is aimed at being plugged to a carrier board.

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 43/115

Copyright TULIPP CONSORTIUM

Page 43 of 115

It relies on the standard PCI bus for the board to board interface. ESMs are typically used on boards

for CompactPCI and VMEbus as well as single-board computers for embedded applications. A company

standard by MEN Micro, a manufacturer of embedded computers, specifies the ESM concept and the

different types of modules. The ESM specification defines one form factor for the printed circuit board:

149 × 71 mm (5.9 × 2.8 in).

4.5.4 PC/104

PC/104 (or PC104) is a family of embedded computer standards which define both form factors and

computer buses. PC/104 is intended for specialized environments where a small, rugged computer

system is required. The standard is modular, and allows consumers to stack together boards from a

variety of COTS manufacturers to produce a customized embedded system.

It currently relies on PCI and more recently (2008) on PCI-express buses.

4.6 Input / Output Interfaces

Depending on the application domain, the hardware has to interface with different kind of sensors and

actuators. For integration grounds, the hardware designer may not have choices but to use the already

existing interfaces and standards. For instance, the automotive domain uses the AUTOSAR standard

that defines interfaces and protocols and we can only advise to use it for any device dedicated to this

market. For other domain there are less constraints, therefore more flexibility is allowed.

TULIPP platform uses open standard interfaces where it is possible.

4.6.1 Camera interfaces

In TULIPP systems, each sensor produces 2D-data, but interfaces, protocols, formats and amount of

data can be very different. In mostly use cases sensor is a digital camera. Because of that, the following

protocols will be described and discussed in D1.3

- GigE Vision

- Camera Parallel Interface (CPI)

4.6.2 Display interfaces

Many TULIPP systems must visualise the processed video on different devices. The following protocols

suitable for that will be described and discussed in D1.3

- HDMI

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 44/115

Copyright TULIPP CONSORTIUM

Page 44 of 115

- Display Serial Interface (DSI)

4.6.3 Hardware interconnect Protocols

Hardware interconnect protocols are needed for connection of different processing boards, external

components (like hard drive or SSD) and actors (like autopilot of UAVs). Standard GigE protocol can be

also used for output in many cases. The following protocols will be described and discussed in D1.3:

- PCIe

- USB

4.7 Scalability of the compute architecture

Scalability can be implemented on many ways:

• Usage of different components the same type (e.g. Ultrascale+)

• Usage of different component types

• Connection of many boards

This part will be extended in D1.3 and will explain how scalability must be taken into account in the

hardware architecture.

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 45/115

Copyright TULIPP CONSORTIUM

Page 45 of 115

5 OPERATING SYSTEM & LIBRARIES

When a developer has to deal with an embedded computer, one of the first challenges he faces is the

size of the memory and the available computing capabilities.

This often leads the software developer to choose not to implement any operating system on top of

the hardware and directly programme the resources manually.

While this is probably a good choice in former times, it is however highly time consuming because each

developer has to develop his own set of libraries, drivers and APIs and at the end reinvent the wheel

at every project.

Using an operating system allows for a better approach, more structured relying on standard APIs

which allows for faster development but also allows to capitalize on the work done on each project to

improve the operating system.

Such an operating system must, however, remain as small as possible so that it does not use all the

available resources of the system both memory wise and computing-power wise. Having an operating

system fine-tuned for an application domain delivering the right and necessary libraries and APIs is the

target that we have in the TULIPP project.

In D1.3 the following sections will be developed.

5.1 Low memory footprint

Since the application domain is embedded, the quantity of memory is always a limiting factor. While

there is a limitation on the maximum amount of memory the selected processor can manage, it is

however mainly constrained because the memory itself leads two other parameters of the computing

solution: (1) the power consumption and (2) the price of the hardware.

Whatever the reason, the total memory is limited and the software must take this constraint into

account. Since the operating system is at the very heart of the software, it must leave enough space

for the application binary code and the data.

5.2 Scheduling policies

The use cases of the project are dealing with real-time. This constraint has to be taken into account by

the operating system that must allow the application to react to external stimuli as fast as possible.

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 46/115

Copyright TULIPP CONSORTIUM

Page 46 of 115

Dedicated interrupt management system to deal with the communications (i.e. the input frames and

the output buffers) must be implemented to allow such a real-time behaviour.

5.3 Managing hard real-time constraints

Moreover, the medical use case must not only react at real-time but must ensure no frame loss.

Specific mechanisms must be implemented in the operating system to warn the application if the

system is close to not being able to meet all the application deadline and specific scheduling policies

must be implemented in the operating system to describe those deadlines.

5.4 Choosing application programming interfaces

The developers of an operating system for embedded applications must keep in mind to reduce the

memory footprint of their libraries, select the right functions to be implemented and implement only

the functionalities that are required.

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 47/115

Copyright TULIPP CONSORTIUM

Page 47 of 115

6 STRUCTURED PERFORMANCE ANALYSIS:

MEETING EMBEDDED IMAGE PROCESSING APPLICATION

REQUIREMENTS WITH HIGH PRODUCTIVITY

The main objective of tool-supported structured performance analysis is to substantially reduce the

effort required to implement an embedded image processing solution on a heterogeneous hardware

platform. We use the term performance in a broad sense to cover key metrics such as runtime, energy

dissipation or power consumption. For image processing systems, requirements are often specified in

terms of target frame rates or the maximum acceptable latency from a frame arrives until processing

is complete.

Development of an embedded image processing application is heavily tied to the hardware platform

it will be deployed on. The reason is that image processing applications often have stringent power

and performance requirements. Meeting these requirements commonly require that the application

is specialized by using accelerators (Borkar and Chien 2011). This results in hardware platforms for

image processing being heterogeneous by containing a collection of compute units with different

performance and power consumption characteristics.

Figure 8: Generic Heterogeneous Hardware Platform

The above figure shows a Generic Heterogeneous Hardware Platform (GHHP). It contains a collection

of computing substrates (i.e., CPUs, GPUs and an FPGA fabric) as well as an interconnection network

and input/output devices. When discussing performance analysis tools in general, we envision that the

target is the GHHP. When focusing on a particular project, we use the concept of a platform instance

(Jahre et al. 2017). The platform instance is the hardware platform, OS and tools in use in the given

project.

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 48/115

Copyright TULIPP CONSORTIUM

Page 48 of 115

The best-practise procedure for implementing an image processing application which meets all

requirements is to carry out an iterative trial-and-evaluation process by changing the code and

evaluating the effect of the change. After many iterations, the application meets its performance

requirements. If for some reasons the requirements cannot be met, even after all possible efforts, then

deep modifications, both in the requirements and the solution design, must be redefined. Tool-

supported structured performance analysis improves developer productivity by reducing the number

of iterations of this trial-and-evaluation loop.

Performance analysis tools are not the only tools necessary for supporting the full project life-cycle. In

addition, tools are necessary for instance support regression tests, simulation, version control,

configuration handling and bug tracking. Our main finding is that the existing state-of-the-art tools

include decent support for such processes and provide options to embed third-party mechanisms for

missing features. Therefore, we will focus on performance analysis tools in this chapter.

6.1 The generic development process

Figure 9: Generic Development process

The above figure shows the Generic Development Process (GDP) (Jahre et al. 2017). GDP is an

abstraction that captures the trial-evaluation development loop and connects it to all components of

a platform instance. GDP is an iterative process for programmers to implement image processing

applications that meet low-power requirements while leveraging the heterogeneous processing

resources available on the platform instance for performance.

The starting point of the generic development process is the baseline application that executes with

correct sequential behaviour on a modern machine with a general-purpose processor. High-level

partitioning decisions decide which baseline functions should be accelerated and how. Partitioning

splits off into accelerator-specific development stages that later join to produce an integrated

application with the same correct behaviour as the baseline. The performance of the integrated

application is checked against requirements. If found lacking, the partitioning and development stages

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 49/115

Copyright TULIPP CONSORTIUM

Page 49 of 115

are restarted. In this manner, programmers iteratively refine the baseline application to approach the

required power consumption and performance.

In the most basic case, GDP can be carried out manually without any tool support. This will result in

very low developer productivity since GDP is reduced to a time-consuming trial-and-error process. The

main task of the performance analysis tools is to capture information about efficiency-bottlenecks in

the current implementation and clearly communicate this information to the developer. The developer

will then be able to make informed decisions on how the implementation needs to be changed to meet

performance requirements.

At a high level, the performance analysis tools need to capture two classes of information to help the

developer identify performance problems:

● Inter-compute unit efficiency: Mapping different parts of the application to the different compute

units available in the hardware platform is necessary to fully leverage the capabilities of a

heterogeneous platform, and performance analysis tools need to provide feedback on the quality

of this mapping. Identification of bottleneck compute units is especially important. Common

techniques for achieving this is to profile the application on each compute unit and present an

aggregated profile to the developer. The profile needs to include both runtimes/latency and

energy/power.

● Intra-compute unit efficiency: A performance bottleneck may also be due to an inefficient

implementation within a single compute unit. In this case, the developer needs to map the

performance problem to the source code responsible for creating it. To achieve this, we need

performance analysis tools that can pinpoint performance problems and automatically relate

these to source code constructs. This capability also needs to cover both runtime/latency and

energy/power.

When the performance problem has been identified, the next step is to change the implementation to

remove the problem or reduce its impact. One option is to let the developer address the problems

without support. This can be an efficient strategy when the developer can leverage application-specific

insights. Performance tools can also help by either implementing fully automatic solutions or

suggesting problem solving strategies that have been used successfully on similar problems in the past

(e.g. suggest using an optimised library function). Tools for automatic performance optimization on

heterogeneous platforms are a challenging research problem that is currently being targeted by many

research groups (Bacon, Rabbah, and Shukla 2013).

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 50/115

Copyright TULIPP CONSORTIUM

Page 50 of 115

6.2 Selecting performance analysis tools

Executing the Generic Development Process (GDP) can be very time-consuming when application

requirements approach the computing capabilities of the platform. Embedded image processing

applications tend to be compute-intensive and require installation in systems where power, energy

and physical size are first-order constraints. Thus, GDP needs to be supported by performance analysis

tools to achieve high developer productivity. In this section, we introduce the state-of-the-art

programming models for heterogeneous systems and discuss the key features needed for performance

tools to efficiently support GDP in the context of embedded image processing systems development.

6.3 Programming model selection

GDP does not put any restriction on which programming model is used to implement the image

processing applications. An important design decision is whether to use a single programming model

for the complete application or to accept that different parts of the system are implemented with

different programming models. We will refer to these strategies as a Single Programming Model (SPM)-

strategy and a Multiple Programming Model (MPM)-strategy, respectively.

 SPM-strategy MPM-strategy

Advantages ● Setup is simpler since a single tool
chain can be used for the complete
applications.

● Application maintenance is simplified
due to a single code-base and single
tool-chain.

● The abstractions employed to support
multiple, different computing units
tend to result in less code being
necessary to implement the
application.

● Using specialised vendor tools for
each component reduces the risk of
introducing performance-limiting
abstractions.

● Platform selection is simplified since
there is no requirement that all
vendors support the same
programming model.

Challenges ● All platform components need to
support the chosen programming
model. This may limit hardware
platform options.

● The higher level of abstraction may
limit the achievable performance and
energy efficiency.

● Application maintenance is
complicated by multiple tool chains,
especially due to upgrades.

● Development and maintenance is
more difficult since the company
needs to recruit and retain people

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 51/115

Copyright TULIPP CONSORTIUM

Page 51 of 115

that are experts in each
programming model.

● Efficient communication
mechanisms and interfaces
between the parts of the application
that are realised in different
programming models needs to be
designed, implemented and
verified.

Figure 10: Advantages and Challenges of the SPM and MPM strategies

The above table outlines the advantages and challenges of the SPM and MPM strategies. Overall, the

SPM-strategy simplifies the development process compared to the MPM-strategy. However, the SPM-

strategy may limit the attainable performance and energy efficiency due to a higher abstraction level.

In addition, the SPM-strategy complicates platform selection since the preferred programming model

needs to be efficiently supported on all platform components. Deciding which strategy to follow is

complex trade-off that depends on application requirements, hardware platform requirements as well

as the expertise and strategic focus of the company.

With an SPM-strategy, there are two main options:

● OpenCL: OpenCL (Stone, Gohara, and Shi 2010) is a standard API that enables program execution

on a heterogeneous system which contains hardware components such as CPUs, GPUs and other

accelerators. It provides an abstraction layer where each computational device (e.g. a CPU or GPU)

is composed of one or more compute units (e.g. processor cores). These units are again subdivided

into Single-Instruction Multiple-Data (SIMD) processing elements. The task of the developer is to

formulate the program in a data- or task-parallel manner to use the computational resources

available in the platform. Although OpenCL guarantees that a program will run correctly on all

OpenCL-supported platforms, platform-specific optimization is commonly necessary to achieve

high performance and energy efficiency. Although FPGA vendors support OpenCL on selected

FPGA platforms, it can be challenging to determine the root cause of performance problems since

the OpenCL computing system model does not map clearly to the FPGA substrate (Wang et al.

2016).

● High-Level Synthesis (HLS): The abstractions of OpenCL may limit implementation flexibility on

hardware platforms that contain reconfigurable fabrics such as FPGAs. An alternative approach is

High-Level Synthesis (HLS) where the application is implemented in a high-level language such as

C. The HLS-tool automatically generates an accelerator for a selected code segment (e.g., a

procedure). HLS is a viable design alternative due to the existence of multiple commercial and

academic tools (e.g. Xilinx Vivado HLS and LegUP (Canis et al. 2013)). There are two important

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 52/115

Copyright TULIPP CONSORTIUM

Page 52 of 115

challenges when using HLS. First, the tools only support a subset of the high-level language which

commonly means that the code needs to be modified to enable HLS. Second, the relationship

between the high-level code formulation and the generated hardware is not always obvious which

complicates performance analysis.

With an MPM-strategy, the programming models tend to be tailored to the capabilities of each

computational device:

● CPU: Current hardware platforms for image processing applications tend to contain multiple CPUs.

Programming models for multi-cores has been studied extensively, and powerful tools such as

OpenMP are available to efficiently parallelize an application using task-based or data-parallel

strategies. An added benefit of using tools such as OpenMP is the existence of advanced

performance analysis strategies (Muddukrishna et al. 2016; Langdal, Jahre, and Muddukrishna

2017).

● GPU: GPUs are commonly part of hardware image processing platforms due to their high efficiency

on graphics and image processing tasks. GPU vendors tend to support using their hardware for

general purpose computations for specific programming models. For instance, NVIDIA focuses on

CUDA while AMD and ARM support OpenCL.

● FPGA: Development for FPGAs has traditionally used Register Transfer Level (RTL) models such as

VHDL or Verilog. These models require specifying low-level implementation details such as the

width of busses, etc. Thus, development using VHDL or Verilog tends to be time-consuming. An

alternative approach is to use high-productivity RTL programming models such as Chisel (Bachrach

et al. 2012). These models improve productivity by abstracting away implementation details and

providing powerful, reusable constructs. In contrast to HLS-tools, the developer still specifies the

concrete structure of the hardware.

6.4 Evaluating performance analysis tools

The selection of programming model and hardware platform will determine the attainable

performance and energy efficiency of the embedded image processing application, while the

capabilities of the performance analysis tools that are available for the chosen programming model

and platform will determine how productively an application that meets requirements can be

developed. In other words, the existence of efficient performance analysis tools is a secondary

concern. There is little point in quickly developing a solution with a programming model that cannot

meet performance and energy efficiency requirements.

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 53/115

Copyright TULIPP CONSORTIUM

Page 53 of 115

The existence of advanced performance analysis tools can only impact programming model and

hardware platform selection when there are multiple options that can meet requirements. In this case,

the performance analysis tools can be evaluated on their ability to:

● Efficiently detect performance problems

● Relate the performance problem to source code construct that caused it

● Provide suggestions or solutions to how the performance problem can be alleviated

Efficient performance problem detection tends to require some form of application profiling combined

with high-level visualizations such as Gantt charts or Grain Graphs (Muddukrishna et al. 2016). With

appropriate mechanisms, the visualizations can automatically zoom in on problematic sections and

thereby significantly simplify performance problem detection.

By leveraging the debug information available in the application binary, it is possible to map a

performance problem to a specific source code location. By externally sampling the CPU program

counter, it is possible to implement a similar strategy to relate instantaneous power measurements to

source code constructs (Jahre et al. 2017).

Providing analysis functions that can automatically solve performance problems is a challenging

research problem, and solving problems tends to be the responsibility of the application developer. A

different approach is restricting the formulation of programs such that performance problems are less

likely to occur (e.g. (Koeplinger et al. 2016; Prabhakar et al. 2016)). Another class of approaches can

avoid some platform-specific performance issues by conducting an extensive Design Space Exploration

(DSE) to ensure that implementation details are chosen to arrive at a high-performance design point

(e.g. (Zhong et al. 2017)). An interesting compromise is to explore semi-automatic approaches where

a tool provides suggestions on how a performance problem can be dealt with and the developer

leverages domain knowledge to choose the exact strategy.

6.5 STHEM: The TULIPP performance analysis tools

The previous sections discussed embedded image processing application development and analysis in

a general sense. In this section, we will give a concrete tool-chain example by introducing the collection

of performance analysis tools that are used in the TULIPP project. Overall, TULIPP follows an HLS-based

SPM-strategy and use a combination of state-of-the-art industrial tools and novel research-based

tools.

The concept of a platform instance was introduced in the start of this chapter. A platform instance can

be created using any combination of hardware, RTOS, and development tools. However, support for

the generic development process in each platform instance is unlikely to be readily available. For

example, all the components of the TULIPP reference platform have independent workflows that

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 54/115

Copyright TULIPP CONSORTIUM

Page 54 of 115

partially overlap the generic development process, and at a more basic level have poor to non-existent

support for each other. To resolve these incompatibilities, we build utilities to fill the gaps between

existing tools and support for the generic development process within the TULIPP project.

We collectively refer to the utilities developed during the TULIPP project as the Supporting uTilities for

Heterogeneous EMbedded image processing platforms (STHEM) (Sadek et al. 2018). STHEM is designed

to be as vendor-independent as possible to simplify implementation for arbitrary platform instances.

STHEM includes connecting glue that interfaces independent components together and standalone

tools that extend individual components to provide complementary features.

Figure 11: The Supporting utilities for Heterogeneous Embedded image processing platforms (STHEM)

The TULIPP toolchain is a combination of STHEM and existing components of a given platform instance

that work together to simplify the generic development process for programmers. The TULIPP-PI1,

which is shown in the above figure, is the platform instance that the TULIPP consortium is focusing most

attention on. The reason for the attention is familiarity with the components that make up the

platform instance. TULIPP-PI1 consists of the Sundance EMC2-ZU3 carrier board with the Xilinx Zynq

UltraScale+ MPSoC processor arranged in a two-board configuration to expose a high degree of

parallelism to applications. The hardware is operated seamlessly by the HIPPEROS RTOS. Application

development tools in the platform instance are custom adaptations of Xilinx SDSoC and HIPPEROS tools

to support multi-board acceleration and real-time requirements.

Utility EMC2-ZU3 HIPPEROS SDSoC

Power Measurement Utility No power measurement

hardware

Does not quantify task

power consumption

Cannot correlate power

consumption with

application phases

HIPPEROS SDSoC

Compatibility Layer

 Cannot accelerate tasks

on FPGA

No support for

HIPPEROS

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 55/115

Copyright TULIPP CONSORTIUM

Page 55 of 115

HW/SW Image Processing

Library

 Few optimized image

processing functions

Design Space Exploration

Utility

(analysis module)

 Cannot auto-tune RTOS

and task parameters

Cannot auto-tune

accelerated function

parameters

Dynamic Reconfiguration

Utility

 No support for dynamic

FPGA reconfiguration

Involved method for

dynamic reconfiguration

Table 2: Limitations of the main TULIPP-PI1 components and needed utilities to alleviate the limitations

The above table lists the limitations of the main TULIPP-PI1 components and which utilities are needed

to alleviate the limitations. STHEM version 1 includes the three utilities that are necessary to provide

a minimal end-to-end image processing system for the TULIPP-PI1 platform:

● The HIPPEROS SDSoC Compatibility Layer (HSCL): The HSCL is needed to provide HIPPEROS

support in SDSoC, and thereby enabling building HIPPEROS applications with HW acceleration. The

utility consists of the configuration files, libraries, and script files needed for SDSoC integration.

The HSCL is a glue layer between HIPPEROS and SDSoC. It is not a standalone STHEM utility and is

by necessity tightly coupled to SDSoC and TULIPP-PI1. By default, SDSoC supports only FreeRTOS

and Linux OS. When the user chooses the OS for an application, the application will be built for

that OS, and the OS will be packaged together with the application into an SD-card image. SDSoC

is limited in its extensibility to other systems. There is no officially recommended method for a

third party to add support for an unsupported OS such as HIPPEROS. This is where the HSCL is

needed.

● The Power Measurement Utility (PMU): The PMU quantifies instantaneous power consumption

of different hardware components and correlates power measurements with application phases.

This enables programmers to isolate power problems and make informed optimization decisions.

The PMU is designed to be as vendor independent as possible. It only requires access to power

supply lines of the platform instance and provides power measurements in a standard trace format

that can be viewed on independent visualizations. Vendor-specific functionality is used only to

identify application phases while correlating with power measurements.

● HW/SW Image Processing Libraries (IPL): The IPL helps programmers implement accelerated

image processing applications. As the name suggests, there are two library variants – hardware

and software. The hardware library includes IP for I/O devices that handle external image

processing (for example, cameras) and image transmission (for example, HDMI). The software

library provides optimized software functions for image processing. In the first 18 months of the

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 56/115

Copyright TULIPP CONSORTIUM

Page 56 of 115

project, we have focused on developing the software library with optimized, streaming-capable

image processing functions for Xilinx SDSoC. The development of the I/O IP has been postponed

until the requirements of the use case applications are fully understood.

We are currently focusing on developing STHEM version 2 which will add support for the following

utilities:

● Analysis and Design Space Exploration Utility: This utility belongs to the final phase of the generic

development process, where the application is working and accelerated on HW, but where the

optimal HW acceleration and RTOS parameters have not yet been found. DSE utility will

automatically test different variants of the application and estimate or measure performance,

power, and logic area for all variants. The pareto front of these experiments will be presented to

the developer which can then choose the solution most suited for the application. Parameters

explored include pipelining of HW functions, memory usage in HW functions, HW/SW interface

selection, and RTOS scheduling.

● Dynamic Reconfiguration Utility: Designing platforms enabled for dynamic reconfiguration is an

involved process, even for experienced designers. There are many interleaving steps that require

deep knowledge of the underlying FPGA architecture. In the next version of STHEM, we will

contribute with a utility for Dynamic Partial Reconfiguration (DPR) that will guide the designer in

creating applications that use HW acceleration that are configured dynamically in the FPGA.

Dynamically reconfiguring FPGAs further reduces power consumption of the hardware platform

by dynamically and adaptively exchanging hardware accelerated functions, using only a fraction of

the total available resources. The hardware platform can also be modified to use a smaller device

to save costs.

We refer the reader to deliverable D4.1 for a detailed description of STHEM (Jahre et al. 2017).

6.6 Tool-chain Standards

For D1.3, we will compile a list of standards we use within the STHEM tools and as well as the interfaces

that are available within vendor tool-chains.

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 57/115

Copyright TULIPP CONSORTIUM

Page 57 of 115

7 PLATFORM, STANDARDS and STANDARDISATION

The aim of this chapter is to collect all the interfaces (HW+SW) used in the book, list them and discuss

their usefulness and applicability.

It also explains how the interfaces could be improved to better serve the purpose of high energy-

efficient platforms for real-time image processing.

7.1 The hardware platform choice

Within the framework of a project, the development of only one hardware instance can be developed

because on top of the chosen hardware the operating system must be developed and the tool chain

must work together with the vendor tools.

Considering the constraints of the use cases and the trade-offs that have to be made, the Zynq MPSoC

was chosen for it is the most versatile and brings the best energy efficiency for it allows to implement

some of the functions of the application to be implemented as hardware accelerators and helps saving

power by switching off the unused parts of the SoC.

Since the use cases have different input/output interfaces requirements, we chose to develop a

module on a carrier board. This allows not only to adapt the carrier board to the IOs of the application

but also to select other chips for future and other instances of the processor module.

PC104 has been chosen because it fits well when rugged computers are required like in cars and UAVs.

Moreover, thanks to PC104, the architecture can easily be extended by stacking the boards which is

also an interesting feature for automotive and medical applications.

The current PC104 connector might certainly be optimized to reduce its size and be more easily used

in very small environments like on some small UAVs and medical devices.

This section will be extended on D1.3

7.2 The operating system implementation choices

Because the application domain is image processing, we chose to implement together with the

operating system some of the common libraries used by most of the implementers of that domain.

OpenCV has become a de facto standard for computer vision application and offers a set of libraries to

efficiently program such applications. While it is largely spread, it is however not possible to compile

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 58/115

Copyright TULIPP CONSORTIUM

Page 58 of 115

the library and deploy it on an embedded architecture while its size exceed the memory of most of the

available targets. Therefore a selection has been made in the API of OpenCV to focus on the most

useful functions.

This section will be extended on D1.3

7.3 The toolchain choices

The main constraint for the toolchain is the interaction with other components. The toolchain has to

interface with vendor toolchains on one side, to the operating system on another side. The operating

system interfaces the toolchain with the hardware through drivers that allow the toolchain to access

specific counters and probes.

While the interactions might appear clearly, the interfaces are much harder to define.

This section will be extended on D1.3 and a description of these interfaces will be described together

with the selection process that has been used.

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 59/115

Copyright TULIPP CONSORTIUM

Page 59 of 115

8 CONCLUSION

This deliverable presented the process to guide designers towards implementing energy efficient

image processing platforms.

The currently known interfaces have been presented and we discussed how a selection was made for

the TULIPP project and its three use cases.

While not defining a standard, the collection of interfaces and the discussion on possible evolution to

improve them can be used to provide the community with better interfaces and higher energy

efficiency.

Through the ecosystem and links with other research project, the TULIPP consortium works actively to

promote the ideas developed in the project and capture interesting ideas and knowledge from other

projects. Together with other projects, we believe that this work is valuable and needs to be

transmitted. We therefore started to define the structure of a book that will collect the knowledge

developed in this joint effort of providing others with higher levels of energy efficiency for embedded

image processing applications.

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 60/115

Copyright TULIPP CONSORTIUM

Page 60 of 115

9 APPENDIX: THE GUIDELINES DATABASE

This chapter contains the list of guidelines produced during the project. The current list is added in

D1.2 but will be revised in D1.3 as we will improve their quality through the process described in D1.2.

9.1 Adjust the Algorithm to the Underlying Architecture

Guideline advice

Adjust the algorithm to the underlining architecture. Not all algorithms are out of the box suitable for

all kinds of accelerators (e.g. FPGA or GPU). Algorithms that allow stream processing are more

appropriate for FPGAs, while algorithms that require random access to memory should preferably be

ported onto a GPU. Find a way to optimize and tailor the algorithm to meet the strengths of the chosen

architecture.

Audience of the guideline

Application developers; System architects

Author and guideline responsible

Igor Tchouchenkov (Fraunhofer)

Guideline reviewers

Not yet assigned by the Quality Assurance Board.

Category of the guideline

Algorithm Architecture Adequation

Insights that led to the guideline

Illustration of the concentric optimization paths of the semi-global-matching algorithm

Initially the algorithm for semi-global-matching (SGM) optimization [1], which is used for the stereo

processing in the UAV use-case, was designed for random access of the image data. As depicted in the

above figure the algorithm optimizes the result for each pixel along numerous concentric paths. This

requires multiple, unordered access to image data and is thus not straight away suitable for the

streaming processing of FPGAs.

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 61/115

Copyright TULIPP CONSORTIUM

Page 61 of 115

References

H. Hirschmueller, Accurate and efficient stereo processing by semi-global matching and mutual

information, in IEEE Computer Society Conference on Computer Vision and Pattern Recognition

(CVPR), 2005.

Recommended implementation method of the guideline along with a solid motivation

for the recommendation

A literature survey on adaptations of the SGM algorithm to different architectures yield helpful insights

for implementation of the algorithm for the UAV use-case. An extensive list of the survey is given in

Appendix A. Note that a reduction of the algorithms complexity, in order to adjust it to the underlining

Hardware, might reduce its accuracy.

FPGA

FPGAs yield best performance per power.

In order to utilize the streaming characteristics of FPGAs, the aggregation paths should be

restricted to the already processed pixels, i.e. 4-5 paths (upper left, upper, upper right, left and current

pixel). This reduces complexity and accuracy of the algorithm, but increases computational speed

significantly.

FPGAs have limited (fast) memory compared to CPU and GPGPU. Take care of memory

consumption!

Power consumption of FPGAs depend on used frame rate and clock frequency. This allows

meeting specific requirements, e.g. less power consumption with reduced temporal resolution,

without changing the algorithm.

8 path aggregation vs. 4 path aggregation

GPU

GPU allows computing the SGM algorithm massively parallelized without larger changes to the

algorithm.

Earlier papers used OpenGL. This seems to be not an efficient option anymore, since CUDA

was release in 2007.

Power consumption higher compared to FPGA

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 62/115

Copyright TULIPP CONSORTIUM

Page 62 of 115

CPU

Different approaches for optimizations. In general reduction of complexity of the algorithm

without specific adaptations to hardware components

Instantiation of the recommended implementation method in the reference platform

Instantiation of the recommended implementation method (based on GPGPU) can be done in the next

generations of TULIPP reference platform only, because in first instantiations no GPU will be available.

Evaluation of the guideline in reference applications

Evaluation of the guideline in the reference application is planned while the TULIPP project.

9.2 Choosing a Real-time Operating System

Guideline advice

The RTOS should be chosen based on the application requirement. You need to choose the
RTOS to be used based on the requirements regarding performance, safety/reliability, timing,
resources utilization and required devices and services. If your design requires high
performance, meaning that you need to use a multicore CPU and/or hardware accelerators
(e.g. FPGAs), it is recommended to use an RTOS that supports those devices.

If your design needs a high degree of reliability, you have to choose an RTOS that can provide
that level of reliability with features such as time & space isolation, watchdogs or self-repair.
If you need to satisfy some industrial safety norm, you need to make sure that the RTOS is
certifiable at the required level. Otherwise, a more common, non-safety certifiable RTOS will
be enough.

If your design requires hard real-time behaviour, then you need to choose an RTOS that can
warranty on time execution by design and never rely on having a performance that is “good
enough on average”. Average timings are anecdotic for a real-time system: it is the worst case
execution time that must be met. It is also recommended to estimate the effect of latencies
and jitter on system performance.

The choice of RTOS must be made according to the hardware constraints of the target
platform regarding memory, power and other limited resources. In particular, the footprint of
the RTOS and middleware can have a significant impact if memory is limited, or even when
not limited the fact that the RTOS kernel is small means it could be cache resident so that OS

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 63/115

Copyright TULIPP CONSORTIUM

Page 63 of 115

overheads is minimal. This can be a major different when compared to large general purpose
Oss. Regarding power, support for low power features (e.g. DVFS) at the RTOS level is
recommended for low power designs.

The chosen RTOS must be able to run on the target platform and drivers for the required
devices and services should be either available or foreseen as part of the development. It is
recommended to limit device and service support to the strict necessary and not to clutter the
system with support for unnecessary devices. This is the reason to recommend an RTOS with
a modular micro kernel architecture.

Audience of the guideline

Application developers; System architects; Operating system designers

Author and guideline responsible

Antonio Paolillo (HIPPEROS)

Guideline reviewers

Not yet assigned by the Quality Assurance Board.

Category of the guideline

Operating System.

Insights that led to the guideline

This recommendation is based on theoretical and experimental background information
regarding real-time systems for critical applications.

Recommended implementation method of the guideline along with a solid motivation for the

recommendation

This guideline has to be followed before implementation. It is recommended to make a short
list of possible RTOS choices and compare different products based on the criteria given in the
recommendation and on their impact on the final design.

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 64/115

Copyright TULIPP CONSORTIUM

Page 64 of 115

Instantiation of the recommended implementation method in the reference platform

The choice of RTOS for the reference platform (HIPPEROS) was made based on this
recommendation taking into account the requirements for the TULIPP use cases.

Evaluation of the guideline in reference applications

Evaluation of the guideline in the reference application is planned while the TULIPP project.

9.3 Do Not Turn the FPGA Device On and Off too Frequently

Guideline advice

Turning FPGA devices off to save active power may turn out to be counter-productive. FPGA
devices can draw a high amount of power during start-up. This can deplete energy in batteries
quickly if the device is powered on and off repeatedly.

Audience of the guideline

Application developers

Author and guideline responsible

Ananya Muddukrishna (NTNU)

Guideline reviewers

Not yet assigned by the Quality Assurance Board.

Category of the guideline

Low-power FPGA design, power measurement

Insights that led to the guideline

It is traditional wisdom to turn off unused GPUs and CPUs to save power. However, this
wisdom does not transfer to FPGA designs since they have to be reconfigured when powered
on. Reconfiguration consumes extra power.

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 65/115

Copyright TULIPP CONSORTIUM

Page 65 of 115

Recommended implementation method of the guideline along with a solid motivation for the

recommendation

Measure the currents and power drawn when the FPGA device is powered on, being
configured, in standby, and active. Include these measurements in system design and dynamic
power management decisions.

Power-on current can be very high if the power-on sequencing is incorrect or the temperature
is outside the recommended range. Configuration current can be higher than active power for
low-power designs. SRAM-based FPGA devices draw current to restore configuration from
non-volatile memory. Standby current is drawn all the time the device is powered on and
active current when the device is active i.e., performing computation.

Instantiation of the recommended implementation method in the reference platform

Not all vendors provide power measurement capability on-board. This is true for the EMC2DP,
a predecessor for the reference platform. NTNU is constructing a general-purpose, fine-
grained, high-frequency power monitoring device for the EMC2DP. This device will enable
programmers to easily measure currents and power drawn when the FPGA device is powered
on, being configured, in standby, and active. We expect to adopt the device to the reference
platform (when available) in case it does not contain an equivalent power monitoring
capability on-board.

Evaluation of the guideline in reference applications

Evaluation is planned within RTOS power management, within FPGA device selection, and
within reference applications. When done, we will report evaluation in detail.

9.4 Move Data Processing as Close to the Sensor as Possible

Guideline advice

Move data processing as close to the sensor as possible. (Pre-) Processing a video stream with
an embedded CPU consumes too much processing power, time and energy. KPIs in your real-
time enabled low-power image processing platform will not be met.

Audience of the guideline

Application developers

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 66/115

Copyright TULIPP CONSORTIUM

Page 66 of 115

Author and guideline responsible

Magnus Peterson (Synective Labs)

Guideline reviewers

Not yet assigned by the Quality Assurance Board.

Category of the guideline

Image processing, low-power, sensor data, video stream

Insights that led to the guideline

In the TULIPP reference platform, sensor data can be connected to the processing system or to
the FPGA part directly. (Pre-) Processing the sensor data in the FPGA, reduces latency and
increases throughput, due to the parallel nature of FPGAs.

Recommended implementation method of the guideline along with a solid motivation for the

recommendation

If available, use on-board methods provided by the hardware manufacturer. For example, for
the TULIPP starter kit, connect the sensor to the FPGA part directly. Consider the following
examples of a Full HD video processing system with a simple pass-through and an HDMI
output.

Instantiation of the recommended implementation method in the reference platform

1. A USB camera connected directly to the ARM processor of the Zynq SoC as input source.
2. Using an HDMI input connected to the FPGA of the Zynq SoC the pass-through design.
3. With optimizations of the part of the data processing responsible for handling the sensor input

the frame rate (e.g. using VDMA instead of DMA).

Evaluation of the guideline in reference applications

1. This achieved 2 frames per second or even less. The Linux operating system uses OpenCV to
read the input and writes it directly to the HDMI output.

2. This achieved 32 frames per second. The Linux operating system only monitors the processing
of the video stream. Here, the sensor is moved close to the data processing executed on the
FPGA only.

3. This achieved up to 60 frames per second.

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 67/115

Copyright TULIPP CONSORTIUM

Page 67 of 115

This shows that moving the sensor as close as possible to the data processing – combined with
simple optimizations – can improve your system.

9.5 Should I Use a FPGA or an ASIC?

Guideline advice

The choice of an FPGA for an Image Processing system has benefits in terms of flexible
Input/Output, as can implement the entire camera standard found in Table 1 of D1.1.

An FPGA can also provide pre/-post processing on images. It’s actually possible to add 32-bit
and/or 64-bit CPUs inside a bare-bone FPGA and that comes typical as an IP-Core, but it does
use a lot of the FPGA resources.

This is a route to take if your aim to develop a system for eventual volume production, as then
possible to create an “Application-Specific-Integrated-Circuit” [ASIC]

Audience of the guideline

Application developers; Firmware developer

Author and guideline responsible

Guideline reviewers

Not yet assigned by the Quality Assurance Board.

Category of the guideline

Critical components selection, i.e. the central processor unit (CPU)

Insights that led to the guideline

If you have chosen an FPGA (Zynq SoC) like the TULIPP Starter Kit, you should check what IP
cores are available and take them into account in your toolchain and development
environment.

In the examples and Use-Cases for TULIPP, we have a CPU integrated into the FPGA by default,
so the IP Cores we refer to here will be for the FPGA fabric.

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 68/115

Copyright TULIPP CONSORTIUM

Page 68 of 115

Recommended implementation method of the guideline along with a solid motivation for the

recommendation

The biggest problem will be to find a suitable IP-Core, so below are suggestions only:

1. In ‘software-land’, then it’s possible to find lots of algorithms and subroutines for even the
most demanding image processing applications and many are included in textbooks and free.
Publisher, like Wiley, has more than 40 (forty!) titles on the subject of image processing -
http://eu.wiley.com/WileyCDA/Section/id-420274.html and the OpenCV community -
http://opencv.org/ - has thousands of programs that are BSD licensed and free.

2. What about ‘hardware-land’? Well, not many, as highly specialized. The best place is
https://opencores.org/. Have 270000+ registered users. The free IP-Cores are typical hardware
specific interfaces, rather than Image Processing specific, so restricted and limited use for the
TULIPP STARTER KIT.

3. The handful of FPGA vendors that sells devices to the open market have their owe IP-Cores
and you can find them on their respective websites, but they are always locked to the specific
vendor and sometimes even to specific devices. Seldom comes with sources, hence can't be
enhanced or reduced. They are typical also free, like this example from Xilinx -
https://www.xilinx.com/products/intellectual-property/ef-di-vid-img-ip-pack.html, so
difficult to complain. Never seems to support the LATEST vendor specific tool-chain, hence not
very useful.

4. Independent vendor IP-Cores, like BarcoSilex’s -
https://www.altera.com/solutions/partners/partner-profile/barco-silex.html - are more
expensive, but comes with support and typical also portable to next generation of FPGA.
Options are for 'closed' IP that is sold per use/chip/system, as modern FPGA has unique ID
option or full sources and unlimited usage. These IP vendors typical support cross
semiconductor cores and also offers Verilog options to enable ASIC implementation

5. One important step in the development of algorithms for FPGAs is the move by vendors
towards “C-to-VHDL” in different ways and routes. It’s possible to get a software algorithm in
either OpenCL, OpenGL, C or C++ (and more options coming) and convert it to target FPGA
fabric. This is what TULIPP uses for the starter-kit and enables porting of current applications
that can be tested on a CPU and moved to FPGA

6. The high-level Model programming of FPGA is also possible, but expensive. Tools like
MathWork's Simulink - https://uk.mathworks.com/solutions/fpga-design.html [vendor
agnostic] and NI's LabVIEW FPGA http://www.ni.com/labview/fpga/ [vendor specific] can
create executable code that can be ported to the FPGA found on TULIPP STARTER KIT.

Instantiation of the recommended implementation method in the reference platform

In terms of priority of approach, then it depends on budget, timescales and personal
preference, but selecting an independent vendor to support your development is the most
efficient and highly recommended. Plenty of vendors are available.

http://eu.wiley.com/WileyCDA/Section/id-420274.html
http://opencv.org/
https://opencores.org/
https://www.xilinx.com/products/intellectual-property/ef-di-vid-img-ip-pack.html
https://www.altera.com/solutions/partners/partner-profile/barco-silex.html
https://uk.mathworks.com/solutions/fpga-design.html
http://www.ni.com/labview/fpga/

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 69/115

Copyright TULIPP CONSORTIUM

Page 69 of 115

Evaluation of the guideline in reference applications

The TULIPP toolchain will contain a few examples of IP-Cores that have been selected to
support our Use-Cases.

9.6 Reordering Loops can Reduce Bandwidth Requirements

Guideline advice

Many image processing algorithms consist of several layers of nested loops.

By rearranging the order of the loops, you can in many cases reduce the required memory
bandwidth and thus increase the processing speed. Try to find the loop-order that let the inner
loop(s) work with local data.

For CPU implementations, this means to maximize the utilization of the memory cache, for
FPGA based systems it means to find a structure where most data accesses use the FPGA
internal memory.

Audience of the guideline

Application developers

Author and guideline responsible

Philippe Millet (Thales)

Guideline reviewers

Not yet assigned by the Quality Assurance Board.

Category of the guideline

Code optimization

Insights that led to the guideline

There is a large difference in memory bandwidth and latency for internal FPGA/cache memory
compared to external accesses, so the more the cache/internal FPGA memory can be used,
the better.

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 70/115

Copyright TULIPP CONSORTIUM

Page 70 of 115

Recommended implementation method of the guideline along with a solid motivation for the

recommendation

Carefully evaluate the memory access patterns of your algorithm.

If an FPGA is your target, try to understand how much of the internal memory that can be
allocated to this part of the algorithm. Try to rearrange your algorithm so that the data you
store externally only needs to be streamed through once, and the data you access more
frequently is stored in FPGA internal memory.

Specifically, also try to keep data that has a random access pattern to internal memories (or
caches for CPUs) while data that is sequentially read can be stored externally, and only
scanned through once.

Instantiation of the recommended implementation method in the reference platform

This guideline will be addressed in all use case implementations.

Evaluation of the guideline in reference applications

Memory utilization and algorithm processing speed will be monitored and evaluated during
the implementation phases.

9.7 Upgrading to newer parts/FPGA architectures

Guideline advice

Upgrading the system, replacing the FPGA for another one that belongs to another family, or
a newer part, may reflect minor changes that can damage the hardware in case the user
doesn't take the appropriate care.

Audience of the guideline

Hardware Designers; System architects

Author and guideline responsible

Timoteo Garcia Bertoa (Sundance)

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 71/115

Copyright TULIPP CONSORTIUM

Page 71 of 115

Guideline reviewers

Not yet assigned by the Quality Assurance Board.

Category of the guideline

hardware, upgrade, FPGA architecture

Insights that led to the guideline

Hardware upgrades can cause incompatibilities in software due to configuration files, which
are recognizable and therefore easy to fix, but sometimes can lead into damaging the
hardware. From 7 series to Ultrascale, the distribution of the logic varies, making some types
of logic interface using different IO standards, requiring different range of voltage. Likewise,
even from one FPGA part to another, sharing the same pinout, FPGA banks might be different,
and accept different ranges of voltage. This can make the user think its applying the correct
voltage when in reality is killing the device.

Recommended implementation method of the guideline along with a solid motivation for the

recommendation

The user should always take in consideration the different approaches a new family of FPGAs
or a new part have when interfacing I/O. Software can detect incompatibilities when trying to
write a bitstream for a different part, assuming the same pinout, recognizing different I/O
standards or incompatible FPGA banks, but not always. The physical configuration in hardware
through jumpers, etc, is as important as the appropriate changes in software to adapt the new
hardware to the system.

Instantiation of the recommended implementation method in the reference platform

Moving from Z7015 to Z7030, the conditioning of the FPGA on Trenz modules makes both of
them seem exactly the same, promising better performance and much more resources in
Z7030. In reality, despite the pinout is the same, TE0715-30 has High Performance and High
Range banks, while TE0715-15 only High Range. Applications where 3.3V are applied to Z7015,
can be easily ported to Z7030, but always changing the I/O standards, to support up to 2.5V
in the HP banks of the FPGA. Applying 3.3V on the Z7030 would damage its HP banks. Moving
from TE0715-30 to TE0820 (Ultrascale+). would mean HR+HP banks to only HP banks. 3.3V
should never be applied to TE0820. In the same way, the corresponding board files that the
user imports in Vivado, can have default configurations, applying incorrect voltages if the

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 72/115

Copyright TULIPP CONSORTIUM

Page 72 of 115

board files have been replicated. Board files of EMC2-7015 and EMC2-7030 should be not only
different at the Zynq configuration, but avoiding 3.3V in all the I/O interfaces for the Z7030.

Evaluation of the guideline in reference applications

9.8 Optimize nested loops with early exit by measuring the number of

unconditional iterations

Guideline advice

Loops with early exit that are themselves within other loops should be profiled to see if the
early exit always happens after a certain number of iterations. If so, the ordering of the loops
can be changed to allow for streaming those initial iterations.

Audience of the guideline

Application developers;

Author and guideline responsible

Carl Ehernstrahle (Synective Labs)

Guideline reviewers

Not yet assigned by the Quality Assurance Board.

Category of the guideline

Code optimization

Insights that led to the guideline

The implementation of Viola-Jones in the Automotive use case is sped up by two orders of
magnitude by using a Cascade. This means that after each stage in the detection, if the score
is below a threshold, the detection is false and the loop exits. There are 2000 stages in total
but 95% of detections exit before stage 100. However, this is not easy to implement on an
FPGA. Thinking about this problem led to this insight.

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 73/115

Copyright TULIPP CONSORTIUM

Page 73 of 115

Recommended implementation method of the guideline along with a solid motivation for the

recommendation

1. Figure out the number of iterations that are always done. In the automotive use case, no
detection exited before 20 stages.

2. Split the loops into two parts: early and late stages.
3. Change the loop ordering in the early stages.

Example:

for x from 0 to 640

 for stage from 0 to 2000

 do classifier stage

 if score below threshold then break

becomes

for stage from 0 to 20

 for x from 0 to 640

 do classifier stage

for x from 0 to 640

 for stage from 21 to 2000

 do classifier stage

 if score below threshold then break

The first part can be streamed in this case, and the second part can avoid much of the work.

Instantiation of the recommended implementation method in the reference platform

This will be implemented in the automotive use case when hardware acceleration work is
started.

Evaluation of the guideline in reference applications

It will be evaluated when it has been done.

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 74/115

Copyright TULIPP CONSORTIUM

Page 74 of 115

9.9 Source Code Organization

Guideline advice

In projects involving both SW and HW, it is wise to consider how the code is organized into
different source files. Done correctly, the build process will be much faster.

Audience of the guideline

Application developers;

Author and guideline responsible

Guideline reviewers

Not yet assigned by the Quality Assurance Board.

Category of the guideline

Toolchain

Insights that led to the guideline

It is common practice to organize source files according to functionality, and the HLS
capabilities of SDSoC suggests that this is acceptable. However, rebuild times will really suffer
if done without care.

Recommended implementation method of the guideline along with a solid motivation for the

recommendation

Normal source code conventions still applies, but an additional convention should be adopted:
Put HLS code into source files of their own. This means both HW accelerated functions and
code that directly calls these functions.

The motivation is that the HLS tool will require a rebuild of the FPGA bitfile every time source
files with HLS code are touched. This is very time consuming. By organizing the source files
correctly, changes to the SW portion of the application will only require a recompile of the ELF
file, which is usually very fast compared to rebuilding the bitfile.

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 75/115

Copyright TULIPP CONSORTIUM

Page 75 of 115

Instantiation of the recommended implementation method in the reference platform

Example applications follow this guideline.

Evaluation of the guideline in reference applications

9.10 Automating the Toolchain

Guideline advice

Automate as much as practically possible with scripts.

Audience of the guideline

Toolchain designers;

Author and guideline responsible

Ananya Muddukrishna (NTNU)

Guideline reviewers

Not yet assigned by the Quality Assurance Board.

Category of the guideline

Toolchain

Insights that led to the guideline

Recommended implementation method of the guideline along with a solid motivation for the

recommendation

While GUI IDEs are convenient for certain operations and for certain stages of the tool learning
process, sometimes productivity can be enhanced by switching partially or fully to command
line tools and scripting languages. Most development tools, such as Xilinx SDSoC, can be
completely controlled from the command line and scripted with TCL. Time should be spent to
learn these capabilities.

Examples of operations suited for scripts:

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 76/115

Copyright TULIPP CONSORTIUM

Page 76 of 115

1. Repetitive and/or error prone operations. Example: Regression testing a new build on
the HW platform, when interactive debugging capabilities are not needed.

2. Complex operations where the steps are unlikely to be remembered to the next time
it is required. Example: Running an experiment on the board and creating reports from
program runs

3. Using the toolchain on systems where a GUI is impossible or impractical. Example: The
toolchain is installed on a build server and the network connection to the developer
desktop is too slow for comfortably forwarding the GUI.

Instantiation of the recommended implementation method in the reference platform

Makefiles, deployment and debugging scripts are supplied for all example programs.

Evaluation of the guideline in reference applications

9.11 Timestamp ADC samples promptly

Guideline advice

When sampling an analog signal using an ADC, timestamp the samples as close as possible to
the sampling instant.

Audience of the guideline

Hardware Designers; System architects

Author and guideline responsible

Ananya Muddukrishna (NTNU)

Guideline reviewers

Not yet assigned by the Quality Assurance Board.

Category of the guideline

Sampling, performance analysis

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 77/115

Copyright TULIPP CONSORTIUM

Page 77 of 115

Insights that led to the guideline

A free-running ADC enables sampling an analog signal at a high frequency. Samples from the
ADC are typically sent over a serial link to a host computer for timestamping and further
processing. These timestamps do not capture the timing nature of the analog signal accurately
due to cable latency, buffering by the serial communication stack, and unpredictable OS
scheduling of the processing program.

Recommended implementation method of the guideline along with a solid motivation for the

recommendation

Timestamp ADC samples promptly i.e., as close as possible to the ADC sampling instant and
before sending the over the serial link to the processing program on the host computer. This
ensures that the timestamps reflect the timing nature of the analog signal.

Instantiation of the recommended implementation method in the reference platform

The current sensor board called Lynsyn built to measure power consumption of the EMC2DP
timestamps ADC samples before sending over serial link to the host computer.

Evaluation of the guideline in reference applications

Compare timestamping accuracy for TULIPP reference application X for two cases:
timestamping at host-side and timestamping at current sensor-side.

9.12 Save implementation time by delegating customizations to the hardware

vendor

Guideline advice

Save implementation time by delegating customizations to the hardware vendor

Audience of the guideline

Hardware Designers; System architects

Author and guideline responsible

Ananya Muddukrishna (NTNU)

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 78/115

Copyright TULIPP CONSORTIUM

Page 78 of 115

Guideline reviewers

Not yet assigned by the Quality Assurance Board.

Category of the guideline

Component selection, embedded hardware design

Insights that led to the guideline

Designers can decide to implement missing hardware features on their own. However, custom
hardware implementation is a surprisingly difficult and time consuming process since it
requires careful component selection, future-proof interfacing, and extensive testing.

The root problem here is overlooking the possibility to use the hardware vendor to make
customizations. Vendors are often perceived as too expensive to approach for customizations.
Experience says the opposite is true. Vendors do make custom changes, often at an affordable
price point if they can reuse existing designs. At least, vendors can confirm if the required
customization is a good idea at all and suggest alternatives.

Recommended implementation method of the guideline along with a solid motivation for the

recommendation

If a piece of hardware does not have required features, talk to your vendor before starting to
implement the missing features on your own. If the vendor's terms for customization are
reasonable, delegate implementation of the missing features to the vendor.

Instantiation of the recommended implementation method in the reference platform

We delegated modification X to the hardware component Y in the TULIPP reference platform Z
to vendor V.

Set 1:

• X = Precision shunt resistors on PS and PL power lines
• Y = UltraScale+ MPSoC SoM
• Z = TULIPP-PI1
• V = Trenz Electronics

Set 2:

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 79/115

Copyright TULIPP CONSORTIUM

Page 79 of 115

• X = 1Msps ADC modules for sampling current drawn by PS and PL
• Y = UltraScale+ MPSoC SoM
• Z = TULIPP-PI1
• V = Trenz Electronics

Evaluation of the guideline in reference applications

It is unclear how to evaluate this guideline. Perhaps a case-study of DIY Vs. vendor
customization.

9.13 Selecting PSU to supply the chosen hardware

Guideline advice

The user should choose the appropriate PSU when testing the corresponding application on
the hardware. For low-powered boards, PC PSUs are not always providing the correct voltages.

Audience of the guideline

Hardware Designers;

Author and guideline responsible

Timoteo Garcia Bertoa (Sundance)

Guideline reviewers

Not yet assigned by the Quality Assurance Board.

Category of the guideline

Power, PSU, hardware

Insights that led to the guideline

Some of the partners within the TULIPP project have faced the issue of finding "hardware not
working", when trying their use-case on the TULIPP board. The solution provided in many cases
was replacing the PSU for another one that provides the correct voltages, or add a
complementary load to pull from the PSU enough current. (i.e. connecting a hard disk to one
of the sata connectors of the PSU)

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 80/115

Copyright TULIPP CONSORTIUM

Page 80 of 115

Recommended implementation method of the guideline along with a solid motivation for the

recommendation

The user should always have in mind that the TULIPP board expects 12V,5V and 3.3V as input.
From the PSU to the power connector onboard, sometimes there is as a voltage loss. As well,
the PSU may be providing not enough voltage to the board, requiring more load, or having to
be replaced by another PSU. To find this out, the user should measure the voltage onboard,
using a multimeter or any other instrument capable of this task.

Instantiation of the recommended implementation method in the reference platform

The EMC2 has JP8,JP7 as reference for the voltages. Depending on the position, the user can
measure 3.3V, 1.8V and 2.5V. 5V can be measured at the power connector. In case of using a
PCIe/FMC application, 12V can be measured at the power connector too. If the voltage
measured on the 3.3V pin results less than 3.2V, the user should suspect a possible miss
functionality of the board, and try to achieve a proper level.

Evaluation of the guideline in reference applications

To be done during hardware integration and use cases implementation

9.14 Manage to accelerate streaming capable functions in a single accelerators

Guideline advice

Fuse as much streaming capable functions into a single accelerator as possible, to reduce the
resource and latency overhead.

Audience of the guideline

Application developers;

Author and guideline responsible

Carl Ehernstrahle (Synective Labs)

Guideline reviewers

Not yet assigned by the Quality Assurance Board.

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 81/115

Copyright TULIPP CONSORTIUM

Page 81 of 115

Category of the guideline

Code optimization

Insights that led to the guideline

Streaming between functions reduces the memory bandwidth consumption and decreases
the computation time for applications implemented of FPGAs. One methodology of how to
implement this is by implementing an accelerator for each function of an application and
letting the tool handling the dependencies. The problem is that this adds unnecessary
resources to the design, which are needed to connect each function to the surrounding
system. This problem can be solved by connecting the functions within a single accelerator
using loop/function level parallelism and a FIFO.

Recommended implementation method of the guideline along with a solid motivation for the

recommendation

The different functions are designed to be streaming capable using the DATFLOW pragma and
can be connected to each other with a FIFO. The following code example shows how to
connect the streaming capable functions func1 and func2.

void func0(int *input, int *output) {

static int buffer[PIXELS];

#pragma HLS STREAM variable = buffer depth = 512

#pragma HLS DATAFLOW

func1 (input, buffer);

func2(buffer, output);

}

}

Instantiation of the recommended implementation method in the reference platform

Implementation examples are provided by the image processing library.

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 82/115

Copyright TULIPP CONSORTIUM

Page 82 of 115

Evaluation of the guideline in reference applications

This guideline will be evaluated during use cases implementation.

9.15 Integrating your image processing HDL code with the platform

Guideline advice

If you have a handcrafted HDL code that can do part of the processing, you want to integrate
it with your SDSoC design in order to enhance acceleration and resource usage (well
Handcrafted HDL is more resource efficient than High-Level Synthesis).

Audience of the guideline

Application developers; Firmware developer

Author and guideline responsible

Lester Kalms (RUB)

Guideline reviewers

Not yet assigned by the Quality Assurance Board.

Category of the guideline

Hardware design, design optimization

Insights that led to the guideline

Feature-based Simultaneous Localization and Mapping (SLAM) algorithm have as the first
processing step the feature detection and description task. They're computationally intensive
and can operate at a streaming of Data. Thus they're suitable for FPGAs. The availability of
HDL based implementations for some functions like Harris or FAST corner detection
algorithms require different methods if we want also to accelerate other part of the algorithm
using SDSoC.

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 83/115

Copyright TULIPP CONSORTIUM

Page 83 of 115

Recommended implementation method of the guideline along with a solid motivation for the

recommendation

The implementation of such a design depends on the requirement of the application. Certain
applications need as an input the processed data and the image data. In that case creating the
Vivado platform require both AXI Video DMA(VDMA) for image acquisition and DMA for
processed data (in the case of ORB descriptor, it would be the corner position and the binary
descriptor of the corner).

Instantiation of the recommended implementation method in the reference platform

There are two kind of Cameras used in TULIPP's projects, HDMI-based and Cameralink-based
Camera. The combination of EMC2 and Avnet HDMI Input/Output FMC was used in a Sobel
and motion detection demo. Integrating HDL with this platform require finding-out the stream
of pixels and the synchronization signals. One way to do that is using the signals out of the
Avnet VHDL module fmc_imageon_hdmi_in.vhd (de, vblank, hblank and data). Note that
'vblank' and 'hblank' are different from 'vsync' and 'hsync'.

Evaluation of the guideline in reference applications

Not yet evaluated.

9.16 Use hil testing rather than wait for a final hardware

Guideline advice

Use Hardware in the loop (HIL) testing with early prototypes rather than wait for fully
integrated hardware.

Audience of the guideline

Application developers; System architects

Author and guideline responsible

Igor Tchouchenkov (Fraunhofer)

Guideline reviewers

Not yet assigned by the Quality Assurance Board.

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 84/115

Copyright TULIPP CONSORTIUM

Page 84 of 115

Category of the guideline

Testing, drones, project/time management

Insights that led to the guideline

The emc2 board uses bulky power supply and is lacking of hardware interfaces like an LVTTL
serial port. In order to make it flyable several steps are necessary. But in order to test a
collision avoidance algorithm, you need to have a flying drone as you need to have closed loop
tests.

Recommended implementation method of the guideline along with a solid motivation for the

recommendation

If you use a drone simulation to test your algorithms you can do this in parallel with the
integration work and save time. This also gives you the advantage of a higher testing density
as you are not limited to the Weather or risks of drone crashes.

Instantiation of the recommended implementation method in the reference platform

drone use-case HIL version

Evaluation of the guideline in reference applications

9.17 How to get EMC2 Board communicate with an UAV

How to get EMC2 Board communicate with an UAV

Guideline advice

The most important step for getting the EMC2 Board to work with an UAV is to establish a
connection. There are different ways to do this.

Audience of the guideline

System architects

Author and guideline responsible

Fraunhofer

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 85/115

Copyright TULIPP CONSORTIUM

Page 85 of 115

Guideline reviewers

Not yet assigned by the Quality Assurance Board.

Category of the guideline

UAV control, serial I/O, UART

Insights that led to the guideline

The TULIPP platform provides an environment for low power and high performance image
processing. Especially users in the field of robotics can benefit from environments like this.
Therefore it is really important to offer help for easy implementation of I/O ports.

Access the UAV through the Serial Port

Setting up in Vivado

First of all you need to build a new Hardware Platform where you define all your in/- and
outputs. The Zynq 7030 uses different MIO Ports which can be made „external“ by changing
to EMIO in Vivado.

• By double clicking the "Zynq Processing System Block" you can make for example the UART1
Port EMIO. Right click on the UART1 Port in the Block Diagram and you can select "make
external".

• In this step you decide which output you prefer. You can use the UART as an RS232 output or
you can choose an 1.8V TTL output. Unfortunately 3.3V is not possible because of the
dependency to a High Performance Bank on the FPGA. These banks only support up to 1.8V on
the Zynq 7030.

• Next you define the constraints by hand or you use the I/O Planning section after the synthesis
to define the ports of the newly generated outputs with the help of Vivado. Run the
implementation and generate the bitstream. To use the new hardware design you need to
export the .hdf file including the bitstream.

Building the distribution with Petalinux

Petalinux is a tool which is based on „Yocto“ where you can rapidly generate your own
distribution for testing your hardware. Please be aware that this distribution is not fully
recommended by TULIPP but since HIPPEROS is still in development it can be a good alternative

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 86/115

Copyright TULIPP CONSORTIUM

Page 86 of 115

for testing. Information about how to setup a Petalinux Environment and how to use Petalinux
can be found inside the Xilinx Documentations.

• At first create a new project and get the hardware description file from Vivado to synchronize
with the EMC2 Board. When this had been done the project can be configured.

• Include the libraries you want to use from the Petalinux „Filesystem Package“. - After doing
that you can build your project. Petalinux creates different files which you need to combine
into a BOOT.bin file and an image.ub file. These files need to be included into the BOOT folder
of the sd card.

Generation of an executable file

To compile your Application you need to use Xilinx SDSoc or SDK.

• Create a new Application project and choose linux as the platform you want
• You need to select the stage folder in the Petalinux build which contains the rootfs of the new

system
• You are able to compile your main, if your program depends on libraries or files you need to

define them inside the build configurations.

Executing an Application

Place the 3 files in the Boot Folder of the sd card and power on the EMC2. While flashing the
FPGA the green LED should light half a second and then turn of. If this is not the case probably
there is something wrong with the generated bootfiles in Petalinux or Vivado.

• Connect the EMC2 Board with the UART0 to USB connector and establish a serial connection.
In linux the board can be found on the /dev/ttyUSB0 port and uses a baudrate of 115200.

• Mount the sd card and execute the application.

Evaluation of the guideline in reference applications

This guideline will be evaluated in the UAV use case.

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2016_2/ug1157-petalinux-tools-command-line-guide.pdf

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 87/115

Copyright TULIPP CONSORTIUM

Page 87 of 115

9.18 Use an external constant voltage reference for the ADC instead of the internal

reference based on positive supply voltage (VDD)

Guideline advice

Use an external constant voltage reference device for the ADC instead of the internal
reference based on positive supply voltage (VDD)

Audience of the guideline

Hardware Designers;

Author and guideline responsible

Ananya Muddukrishna (NTNU)

Guideline reviewers

Not yet assigned by the Quality Assurance Board.

Category of the guideline

ADC, measurement

Insights that led to the guideline

Positive supply voltage drifts with temperature and varies with load.

Recommended implementation method of the guideline along with a solid motivation for the

recommendation

Use constant voltage reference chips such as LM385 or LT1009.

Instantiation of the recommended implementation method in the reference platform

Lynsyn, the power measurement board, part of the power measurement utility (STHEM), uses
LT1009 as a constant 2.5V reference.

Evaluation of the guideline in reference applications

This guideline is evaluated during the development of the tool chain.

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 88/115

Copyright TULIPP CONSORTIUM

Page 88 of 115

9.19 Isolate designs to low-power domains to reduce power consumption

Guideline advice

Isolate functionality to power domains to reduce power consumption

Audience of the guideline

Application developers; Firmware developer

Author and guideline responsible

Carl Ehernstrahle (Synective Labs)

Guideline reviewers

Not yet assigned by the Quality Assurance Board.

Category of the guideline

Power measurement, power optimization

Insights that led to the guideline

Zynq UltraScale+ MPSoC has three power domains -- full-power, low-power, and PL domains.
Each domain has components that can be clock-gated. Not using entire power domains saves
more power than using all domains with optimized clock-gating.

Reference: https://www.xilinx.com/support/documentation/white_papers/wp482-zu-pwr-
perf.pdf

Recommended implementation method of the guideline along with a solid motivation for the

recommendation

Constrain applications to work with low-power domains.

https://www.xilinx.com/support/documentation/white_papers/wp482-zu-pwr-perf.pdf
https://www.xilinx.com/support/documentation/white_papers/wp482-zu-pwr-perf.pdf

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 89/115

Copyright TULIPP CONSORTIUM

Page 89 of 115

Instantiation of the recommended implementation method in the reference platform

TULIPP project applications X, Y and Z avoid the full-power domain entirely, and use low-power
and PL domains.

Evaluation of the guideline in reference applications

This guideline is evaluated during the implementation of the use cases.

9.20 Beware the parameters of external data/clocking when testing or debugging

Guideline advice

Beware the parameters of external data/clocking when testing or debugging, as it can lead to
misunderstanding when the problem resides on the external patterns provided to the system
in order to debug.

Audience of the guideline

Hardware Designers; System architects

Author and guideline responsible

Timoteo Garcia Bertoa (Sundance)

Guideline reviewers

Not yet assigned by the Quality Assurance Board.

Category of the guideline

Debugging, testing

Insights that led to the guideline

The EMC2 provides an external SMA input connector (J5), to apply external clocking/data. One
of the ways of scoping internal signals in Vivado is instantiating an ILA core (Integrated Logic
Analyzer), which needs a clock input that belongs the clock domain of the signals the user
wants to scope. Certain designs run under clock domains that are not appropriate for the user
to use the ILA core, as the frequency of the sampling clock for the core might be too high, and
therefore, to scope a certain range of the signals the depth of the ILA must be very high, which

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 90/115

Copyright TULIPP CONSORTIUM

Page 90 of 115

is a limitation on the size of the FPGA in terms of resources. An easy way to scope internal
signals of a design that run under a very fast clock, assuming the user just needs to see the
behaviour of these, is using an external clock, asynchronous to the signals, but easy
modifiable, being the user able to inject the desired frequency to increase/reduce samples
shown in the ILA for the same amount of resources in the FPGA.

When injecting an external clock through J5 in the EMC2, the user must remember that this
connector is connected straight away to an IO pin of the FPGA, and therefore, if the external
clock is generated from a signal generator with internal 50Ohms, the amplitude of the clock
might not be enough for the FPGA to detect it as a clock input. This will make the ILA core
never run, and therefore the user may blame the design without noticing the ILA core is not
fed properly with a free-running clock.

Recommended implementation method of the guideline along with a solid motivation for the

recommendation

Always measure the voltage levels, frequency and amplitude of the external clocks applied to
an FPGA in order to test, to discard the possibility of reduced amplitude in an IO pin, avoiding
the user being led to a wrong diagnose.

Instantiation of the recommended implementation method in the reference platform

When using J5 to use external clocks on the EMC2, make sure the amplitude is 1.8, 2.5 or 3.3V
peak to peak (depending on the IO standard applied through the jumpers) at the output of
your signal generator, regarding the possible internal resistors within the device, so that the
FPGA receives the correct levels into the corresponding IO pin.

Evaluation of the guideline in reference applications

9.21 Make sure to access streamed data from within accelerated function

Guideline advice

When using streamed data as in/output to a hardware accelerated function, it is important to
perform a read/write operation in each loop operation. No conditional access to the streamed
data.

Audience of the guideline

Application developers;

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 91/115

Copyright TULIPP CONSORTIUM

Page 91 of 115

Author and guideline responsible

Thales

Category of the guideline

code optimization, FPGA design, HLS

Insights that led to the guideline

The stereo algorithm for the UAV use case requires a simultaneous input of two images. A first
test, was to load two images and display the upper half of the left image and the lower half of
the right image simultaneously. The data of the input images was streamed into the
accelerated function and accessed conditionally depending on the current row index.
Executing the code with synthesized HW functions only showed a black screen, as the board
didn't start up properly. Remedy was to access all input data within each loop iteration and
perform a conditional variable selection.

Recommended implementation method of the guideline along with a solid motivation for the

recommendation

Example:

func(unsigned char* in_left, unsigned char* in_right, unsigned char* out)
{
 int x, y;
 for(y = 0; y < IMG_HEIGHT; y++)
 {
 for(x = 0; x < IMG_WIDTH; x++)
 {
 unsigned char px;

 // wrong access
 if(y < (IMG_HEIGHT / 2))
 px = in_left[y * IMG_WIDTH + x];
 else
 px = in_right[y * IMG_WIDTH + x];

 out[y * IMG_WIDTH + x] = px;
 }
 }
}

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 92/115

Copyright TULIPP CONSORTIUM

Page 92 of 115

Becomes:

func(unsigned char* in_left, unsigned char* in_right, unsigned char* out)
{
 int x, y;
 for(y = 0; y < IMG_HEIGHT; y++)
 {
 for(x = 0; x < IMG_WIDTH; x++)
 {
 unsigned char px_l, px_r, px_out;

 // correct access
 px_l = in_left[y * IMG_WIDTH + x];
 px_r = in_right[y * IMG_WIDTH + x];

 if(y < (IMG_HEIGHT / 2))
 px_out = px_l;
 else
 px_out = px_r;

 out[y * IMG_WIDTH + x] = px_out;
 }
 }
}

Instantiation of the recommended implementation method in the reference platform

Instantiation as part of the UAV use case.

Evaluation of the guideline in reference applications

Evaluation as sandbox test application

9.22 Writing for HW

Guideline advice

To keep the possibilities for HW/SW partitioning as open as possible, compute intensive
functions should be written with HLS in mind. Optimizations for execution on a CPU or an
FPGA should come towards the end of the application development process, after the HW/SW
partition has been fixed.

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 93/115

Copyright TULIPP CONSORTIUM

Page 93 of 115

Audience of the guideline

Application developers; Firmware developer

Author and guideline responsible

Ananya Muddukrishna (NTNU)

Category of the guideline

Toolchain

Insights that led to the guideline

Work on an automatic design space exploration tool has shown that it is non-trivial to convert
a typical C function to a form suitable for HLS. Manual work is typically needed, sometimes
resulting in large rewrites.

Recommended implementation method of the guideline along with a solid motivation for the

recommendation

High level synthesis makes it possible to write HW modules to be executed on an FPGA using
normal C code. This is useful for SW programmers without HDL experience which then can
produce FPGA modules without learning a new language. It is also useful for experienced FPGA
developers when full control over the resulting module is not needed or wanted.

The programmer cannot, however, write code without considering the limitations of the HLS
tool. In the early phases of application development, the final HW/SW partitioning of the
application is likely still unknown. By keeping HLS in mind, less work will be required when C
functions are later chosen for HW implementation.

The following guideline increases the possibility that your code will be HLS compatible:

1. Organize your code such that the compute intensive parts are self-contained kernels.
Keep system and library calls elsewhere.

2. HLS requires that C constructs are of a fixed or bounded size. Either use only fixed or
bounded sizes in the compute kernels, or write the code such that it is easy to later
fulfil this requirement.

3. Inside the compute kernels, memory allocation should be avoided and stack allocated
variables should be preferred. When more memory is needed than can be safely

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 94/115

Copyright TULIPP CONSORTIUM

Page 94 of 115

allocated on the stack, #ifdef can be used to select between implementations using
malloc and stack variables.

4. Avoid pointer casting, and if needed use only pointer casting between native C types
5. When using pointer arrays, make sure the pointers point to a scalar or array of scalars.

Avoid pointer arrays pointing to additional pointers.
6. Do not make the compute kernels recursive

For further information on writing HLS compatible code, see Xilinx User Guide UG902.

Instantiation of the recommended implementation method in the reference platform

Evaluation of the guideline in reference applications

9.23 Remove recursion when aiming to parallelize code

Guideline advice

Use loops instead of recursive function calls when aiming to optimize code for parallel
programming on appropriate hardware such as GPU or FPGA.

Audience of the guideline

Application developers; Firmware developer

Author and guideline responsible

Ruf, Boitumelo (Fraunhofer)

Category of the guideline

code optimization, GPGPU, FPGA, HLS

Insights that led to the guideline

A key-aspect of the SGM algorithm is the aggregation along concentric paths which centre in
the currently processed pixel. In [1] a recursive path traversal is proposed. Yet, recursive
function calls are very inefficient when it comes to running on parallel hardware. Moreover
APIs such as CUDA, OpenCL or Vivado HLS do not support recursive function calls.

https://github.com/tulipp-eu/tulipp-guidelines/wiki/Remove-recursion-when-aiming-to-parallelize-code#literature

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 95/115

Copyright TULIPP CONSORTIUM

Page 95 of 115

Recommended implementation method of the guideline along with a solid motivation for the

recommendation

Hence, instead of implementing recursive function calls use loops instead. This requires
temporary buffers or variables to store the parameters which are passed to the recursive
function between consecutive loop iterations.

Strategies on how to convert recursive functions to loops are found here.

Instantiation of the recommended implementation method in the reference platform

Such a conversion is instantiated in optimizing the SGM algorithm for parallel hardware as
part of the UAV use case. The recursive path traversal of the aggregation is replaced by
iterative strategy.

Each path direction is implemented as a separate loop going from one image boarder to the
other. For each pixel along the path the aggregated costs are stored in a separate cost volume.
This allows a parallelization of the path traversals as all paths are independently operating on
constrained subsets of data.

See UAV use case code for more details.

Evaluation of the guideline in reference applications

This guideline will be evaluated during use case implementation.

Related guidelines

How to optimize sgm for GPGPU

References

 [1] Hrischmueller, H., "Stereo Processing by Semi-Global Matching and Mutual Information",
Transactions on Pattern Analysis and Machine Intelligence (TPAMI), IEEE, vol. 30, pp. 328-341,
2008.

https://stackoverflow.com/questions/159590/way-to-go-from-recursion-to-iteration
https://github.com/tulipp-eu/tulipp-guidelines/wiki/How-to-optimize-sgm-for-GPGPU

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 96/115

Copyright TULIPP CONSORTIUM

Page 96 of 115

9.24 How to optimize sgm for GPGPU

Guideline advice

In order to efficiently map the path aggregation of the semi-global-matching (SGM) [1]
optimization onto massively parallel hardware, such as GPUs, partition the aggregation into
small kernels. Each kernel should operate on a locally constrained subsets of data. This enables
the GPGPU driver to distribute the processing onto the large number of processing units
inherent to modern GPUs, alleviating the SIMD paradigm of GPU programming.

Audience of the guideline

Application developers;

Author and guideline responsible

Ruf, Boitumelo (Fraunhofer)

Guideline reviewers

Not yet assigned by the Quality Assurance Board.

Category of the guideline

code optimization, SGM, GPGPU

Insights that led to the guideline

Implementing the algorithm for GPGPU requires a paradigm shift with respect to the path
aggregation of the SGM optimization. A recursive path traversal starting from each pixel, for
which the disparity is to be estimated, is very inefficient for massively parallel architectures.
This is due to the fact that the image data is not accessed in a contiguous manner, making
hardware optimizations very difficult. A redesign of the algorithm is required, removing the
recursion in the path traversal.

Furthermore, each aggregation path only uses a locally constrained subset of data, i.e. the
aggregated cost on the path itself. Hence, each aggregation path can run in parallel on
different processing units

https://github.com/tulipp-eu/tulipp-guidelines/wiki/How-to-optimize-sgm-for-GPGPU#literature
https://github.com/tulipp-eu/tulipp-guidelines/wiki/Remove-recursion-when-aiming-to-parallelize-code
https://github.com/tulipp-eu/tulipp-guidelines/wiki/Remove-recursion-when-aiming-to-parallelize-code

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 97/115

Copyright TULIPP CONSORTIUM

Page 97 of 115

Recommended implementation method of the guideline along with a solid motivation for the

recommendation

Implement separate kernels for each path direction of the aggregation and instantiate each
kernel with the number of paths which are to run for the given path direction.

Instantiation of the recommended implementation method in the reference platform

Instantiation as part of GPGPU implementation of the UAV-Use-Case.

Evaluation of the guideline in reference applications

This guideline will be evaluated during use cases implementation.

Related guidelines

Remove recursion when aiming to parallelize code

References

[1] Hrischmueller, H., "Stereo Processing by Semi-Global Matching and Mutual Information",
Transactions on Pattern Analysis and Machine Intelligence (TPAMI), IEEE, vol. 30, pp. 328-341,
2008.

9.25 Save Intermediate Storage with Dataflow Regions

Guideline advice

When writing HW modules using Xilinx HLS, a streaming architecture is often the most
efficient choice.

To avoid large intermediate buffers between sub-modules (which can easily require more than
can fit in the FPGA), use the DATAFLOW pragma. Performance will most likely also improve.

Audience of the guideline

Application developers; Firmware developer

https://github.com/tulipp-eu/tulipp-guidelines/wiki/Remove-recursion-when-aiming-to-parallelize-code

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 98/115

Copyright TULIPP CONSORTIUM

Page 98 of 115

Author and guideline responsible

Timoteo Garcia Bertoa (Sundance)

Guideline reviewers

Not yet assigned by the Quality Assurance Board.

Category of the guideline

HLS

Insights that led to the guideline

Experimentation with Xilinx HLS examples.

Recommended implementation method of the guideline along with a solid motivation for the

recommendation

Even though HLS gives the impression that any C code should work well, it is crucial for
performance that the designer thinks HW architecture when designing.

One limitation of the FPGA compared to a CPU is available memory. On-chip memory is usually
very limited. When designing a HW module where one sub-module is calculating a large
intermediate result (e.g. a large image), and another sub-module continues on this
intermediate result, a dataflow architecture (with the DATAFLOW pragma) will enable the sub-
modules to run in parallel and reduce the necessary intermediate storage to only a one-
element FIFO (e.g. holding a single pixel).

Instantiation of the recommended implementation method in the reference platform

Evaluation of the guideline in reference applications

This guideline will be evaluated during use cases implementation.

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 99/115

Copyright TULIPP CONSORTIUM

Page 99 of 115

9.26 When to use conditional branching

Guideline advice

Conditional branching such as if-then-else is vital to most image processing applications, e.g.
finding maximum similarity between pixels. While conditional branching is cheap on CPUs and
FPGAs, it is to be used with caution when optimizing code for parallel GPGPU.

Audience of the guideline

Application developers; Firmware developer

Author and guideline responsible

Ruf, Boitumelo (Fraunhofer)

Guideline reviewers

Not yet assigned by the Quality Assurance Board.

Category of the guideline

code optimization, GPGPU, FPGA

Insights that led to the guideline

CPUs are designed for general purpose processing and are equipped with optimization
strategies such as branch prediction which allow a fast response to conditional input. In order
to achieve parallel processing on CPUs the programmer instantiates different threads and
processes which can run concurrently on the different processing cores. The scheduler of the
CPU is free to pause the processing of certain threads in order to react to important interrupts
and inputs. Hence, it is not guaranteed that all threads will run synchronously. Furthermore,
due to its flexibility the CPU, unlike GPGPUs, is able to only process the branch for which the
conditional directive resolved to true.

FPGAs can also cope well with conditional branching, as HLS will create different paths for
each conditional branch. The use of conditional branching is therefore very cheap when
programming FPGA with the help of HLS.

In order to achieve great parallelism and high data throughput, GPGPUs run numerous (>100)
kernels on a large number of processing units. The key aspect of this processing is that each

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 100/115

Copyright TULIPP CONSORTIUM

Page 100 of 115

instantiation of the kernel is performing the same processing but on different subsets of data.
GPGPU vendors call this paradigm Single-Instruction-Multiple-Threads (SIMT) which is similar
to Single-Instruction-Multiple-Data (SIMD). This SIMT processing requires that all kernel
instances run synchronously. This means that when kernels have conditional branching, all
branches are evaluated and processed in order to keep the threads from diverging. At the end
the result of the particular branch is chosen for which the conditional expression resulted in
true. Hence, conditional branching with large bodies to save processing time is to be avoided,
as all branches will be processed anyway. See [1] for more information.

Recommended implementation method of the guideline along with a solid motivation for the

recommendation

When optimizing code for GPGPUs try to use loops instead of if-then-else branches. Try to
minimize conditional branching to inline conditionals such as: Variable_A = (Condition_for_A) ?

Variable_B : Variable_C;

Instantiation of the recommended implementation method in the reference platform

Instantiation as part of GPGPU implementation of the UAV-Use-Case.

Evaluation of the guideline in reference applications

This guideline will be evaluated during use cases implementation.

References

[1] "CUDA C Programming Guide", Nvidia, 2017. [pdf]

9.27 Do not use floating point computation on FPGA

Guideline advice

Using floating point computation in FPGAs requires multiple loop iterations for basic
arithmetic operations. Hence, in order to achieve high data throughput try to avoid floating
point operations.

https://github.com/tulipp-eu/tulipp-guidelines/wiki/When-to-use-conditional-branching#literature
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 101/115

Copyright TULIPP CONSORTIUM

Page 101 of 115

Audience of the guideline

Application developers; Firmware developer

Author and guideline responsible

Ruf, Boitumelo (Fraunhofer)

Guideline reviewers

Not yet assigned by the Quality Assurance Board.

Category of the guideline

code optimization, FPGA, HLS

Insights that led to the guideline

Using floating point penalties in the Semi-Global-Matching (SGM) algorithm led to low
throughput, as HLS cores could not be pipelined, due to conversion from floating point to
signed/unsigned.

Recommended implementation method of the guideline along with a solid motivation for the

recommendation

Avoid floating point operations if possible.

Instantiation of the recommended implementation method in the reference platform

Instantiation as part of FPGA implementation of the UAV-Use-Case.

Evaluation of the guideline in reference applications

This guideline will be evaluated during use cases implementation.

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 102/115

Copyright TULIPP CONSORTIUM

Page 102 of 115

9.28 Avoid LibTIFF library and use raw image format

Guideline advice

Avoid LibTIFF library and use raw image format

Audience of the guideline

Application developers;

Author and guideline responsible

Alvin Sashala Naik (Thales)

Guideline reviewers

Not yet assigned by the Quality Assurance Board.

Category of the guideline

Image decompression libraries, hardware optimisation, cross-compilation

Insights that led to the guideline

Difficulties to integrate LibTIFF library to image compression and decompression for RTOS or
bare metal implementation

Recommended implementation method of the guideline along with a solid motivation for the

recommendation

During development phase, convert manually all test images in Tiff format into either
PPM/PGM images or hexdump format to avoid dependency issues during cross-compilation
for RTOS implementations.

Instantiation of the recommended implementation method in the reference platform

When testing the algorithm on a live image sensor, discard heavily opencv-dependent libraries
and work on the raw data flow from the image sensor. Use C programming language so as to
work according to Kahn Process Network programming rules.

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 103/115

Copyright TULIPP CONSORTIUM

Page 103 of 115

Evaluation of the guideline in reference applications

This guideline will be evaluated during use cases implementation.

9.29 Use EMVA1288 to compare cameras

Guideline advice

Use metrics from the EMVA1288 standard to compare cameras

Audience of the guideline

System architects

Author and guideline responsible

Timoteo Garcia Bertoa (Sundance)

Guideline reviewers

Not yet assigned by the Quality Assurance Board.

Category of the guideline

Device selection

Insights that led to the guideline

Selecting a camera that matches application requirements is a crucial first step. Mismatched
cameras can complicate the processing pipeline and increase power consumption. Camera
selection is a tiring and error-prone process since camera vendors use custom metrics that are
difficult to compare even for experts. It literally a camera jungle out there!

Recommended implementation method of the guideline along with a solid motivation for the

recommendation

Use EMVA1288 metrics in datasheets to compare cameras. Avoid vendors that supply cameras
without EMVA1288 or other standard comparison metrics.

Here is more information about EMVA1288.

https://en.wikipedia.org/wiki/EMVA1288

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 104/115

Copyright TULIPP CONSORTIUM

Page 104 of 115

Instantiation of the recommended implementation method in the reference platform

We selected camera A for TULIPP platform Z after comparing cameras A, B, C, D, E, and F using
EMVA1288 metrics M, N, O, P, Q, and R.

Evaluation of the guideline in reference applications

Performance and power consumption degraded by X and Y respectively when we choose a
bad camera B for application M. The best camera in terms of performance and power for M is
A.

9.30 Low latency image processing over TCP IP data stream

Guideline advice

Real-time IP stream for sensor input and image processing

Audience of the guideline

 System architects

Author and guideline responsible

Alvin Sashala Naik (Thales)

Guideline reviewers

Not yet assigned by the Quality Assurance Board.

Category of the guideline

TCP/IP, Gstreamer, OpenCV, FFMPEG

Insights that led to the guideline

Integration constraints from Thales Electron Devices (TED)

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 105/115

Copyright TULIPP CONSORTIUM

Page 105 of 115

Recommended implementation method of the guideline along with a solid motivation for the

recommendation

OpenCV structures aren't a good fit for real-time image processing over RTSP protocol
(definitely not for real time critical applications). The best approach that would provide better
configuration is running a GStreamer library pipeline through OpenVX/CUDA (with zero-copy)
processing pipe and outputting the stream using GStreamer again. More importantly, one can
use circular buffers which can be flushed every time and request the latest frame in the best
approach. RTSP or MJPEG is not particularly helpful for hard real-time applications such as for
medical imaging.

Instantiation of the recommended implementation method in the reference platform

Implement different pipelines using Gstreamer (one for HMDI display and another for storage
on disk) over the RTSP stream. Perform image processing using OpenVX for zero-copy and low-
latency.

Evaluation of the guideline in reference applications

This guideline will be evaluated during use cases implementation.

9.31 Major challengers to integrating hard real time image processing using neural

networks in MPSoCs

Guideline advice

Integrate Convolutional Neural Networks in low-power embedded computer vision with hard
real-time constraints

Audience of the guideline

Application developers;

Author and guideline responsible

Alvin Sashala Naik (Thales)

Guideline reviewers

Not yet assigned by the Quality Assurance Board.

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 106/115

Copyright TULIPP CONSORTIUM

Page 106 of 115

Category of the guideline

Neural Networks, Computer vision, Deep-learning

Insights that led to the guideline

Barriers to implement computationally intensive deep learning algorithms in low-power
embedded system-on-chips considering hard real-time constraints

Recommended implementation method of the guideline along with a solid motivation for the

recommendation

1. Reduce neural network weights to the order of kilobytes so that they fit into the SRAM memory
(use lower than INT8 precision)

2. Network Pruning so as to make your neural network as most efficient as possible (up to 90%
pruning possible and needed)

Instantiation of the recommended implementation method in the reference platform

The instantiation requires reworking the neural network which depends from the framework.

Evaluation of the guideline in reference applications

This guideline will be evaluated during use cases implementation.

9.32 Ensure Dataflow by using Inline Sub-functions

Guideline advice

Especially for smaller sub-functions, data streaming can become quite cumbersome. A simple
alternative to ensure dataflow is to declare those functions as "inline".

Audience of the guideline

Application developers; software Developers;

Author and guideline responsible

Antonio Paolillo (HIPPEROS)

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 107/115

Copyright TULIPP CONSORTIUM

Page 107 of 115

Guideline reviewers

Not yet assigned by the Quality Assurance Board.

Category of the guideline

Code Optimization

Insights that led to the guideline

When trying to export code into sub-functions, the dataflow can be interrupted. Streaming
the data in every function often comes with additional work. Inline-Sub-functions propose a
simple alternative for reducing the complexity of the code, making it more comprehensible
while also ensuring dataflow.

Recommended implementation method of the guideline along with a solid motivation for the

recommendation

If streaming data to a sub-function appears to be too complex, try using: #pragma HLS INLINE

This removes the function as a separate entity in the hierarchy. After inlining, the function is
dissolved into the calling function and no longer appears as a separate level of hierarchy in
the RTL. In some cases, inlining a function allows operations within the function to be shared
and optimized more effectively with surrounding operations.

However: An inlined function cannot be shared. This can increase area required for
implementing the RTL. The function also does not show up in the hierarchy of the HLS report.

For more information about inlining subfunctions see SDx Pragma Reference Guide.

Instantiation of the recommended implementation method in the reference platform

Implementation Examples are provided in the referenced Guide above.

Evaluation of the guideline in reference applications

While Implementing the SGM-Algorithm, inlining subfunctions has been a solid method for
exporting code into subroutines without hurting the pipeline. They can be used to help
structuring the code.

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_2/ug1253-sdx-pragma-reference.pdf

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 108/115

Copyright TULIPP CONSORTIUM

Page 108 of 115

9.33 Data logging using SD Card

Guideline advice

If process data needs to be stored (e.g. for post processing or verification) you can use the SD
Card as a non-volatile storage.

Audience of the guideline

Application developers; System architects

Author and guideline responsible

Magnus Peterson (Synective Labs)

Guideline reviewers

Not yet assigned by the Quality Assurance Board.

Category of the guideline

Data Logging

Insights that led to the guideline

Taking on camera calibration forced us to store image information for post processing.
Therefore, a method for storing was needed. Research led us to the following guide:
https://embeddedcentric.com/data-logging-using-sd-cards/

Recommended implementation method of the guideline along with a solid motivation for the

recommendation

Firstly, we need FatFs. This is a generic FAT/exFAT filesystem module for small embedded
systems. More information can be found here: http://elm-chan.org/fsw/ff/00index_e.html

1. The corresponding file is included with: #include "ff.h"

2. Afterwards, an instance of type file system associated with the SD card needs to be
declared: FATFS fs;

3. Also, an instance of a type file needs to be created: FIL file1;

https://embeddedcentric.com/data-logging-using-sd-cards/
http://elm-chan.org/fsw/ff/00index_e.html

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 109/115

Copyright TULIPP CONSORTIUM

Page 109 of 115

4. In addition, we declare a variable which is used to hold the return value of the FatFs APIs:
FRESULT result;

5. Before we can open a file, we first need to initialize the SD Card by using f_mount:

result = f_mount(&fs, Path, 1);

if (result != 0) {

 xil_printf("Mounting failure: %d\r\n", result);

 return XST_FAILURE;

}

Path refers to a string pointer, containing the logical drive number: const TCHAR *Path = "1:"; We
furthermore check the return value of f_mount, so we can derive possible errors. The
corresponding error codes can be found on the FatFs site.

6. Now we can continue by opening the file with f_open:

result = f_open(&file1, "1:/L_img.txt", FA_CREATE_ALWAYS | FA_WRITE);

if (result != 0) {

 xil_printf("Opening failure %d\r\n", result);

 return XST_FAILURE;

}

"L_img.txt" specifies the name of the file, while the third parameter specifies the method of
access. In this example, the file is created (first discared if existing) and WRITE-only.

7. Writing to the file is done with the f_write command:

result = f_write(&file1, (unsigned char*) ADDRESS, DATA_SIZE, &count);

if (result != 0) {

 xil_printf("Writing failure!\r\n");

 return XST_FAILURE;

}

ADDRESS is the pointer to the Array to be written. DATA_SIZE specifies the number of bytes
to be written to the file, while count (unsigned integer) is used to count the already written
bytes.

8. Finally, the file needs to be closed, which is done by using f_close:

result = f_close(&file1);

if (result != 0) {

 xil_printf("Closing failure\r\n");

 return XST_FAILURE;

}

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 110/115

Copyright TULIPP CONSORTIUM

Page 110 of 115

Instantiation of the recommended implementation method in the reference platform

Evaluation of the guideline in reference applications

The guideline was used to save two images, each of the size 1024x768x2 Bytes, which equals
3 Mb. The storing process took around ~500ms, running on the ZYNQ UltraScale+.

.

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 111/115

Copyright TULIPP CONSORTIUM

Page 111 of 115

10 REFERENCES

[1] C. Simmonds, Mastering Embedded Linux Programming: Packt Publishing Ltd, 2015.
[2] (4 October 2016). NEON - ARM. Available:

http://www.arm.com/products/processors/technologies/neon.php
[3] (4 October 2016). RT PREEMPT HOWTO - RTwiki. Available:

https://rt.wiki.kernel.org/index.php/RT_PREEMPT_HOWTO
[4] (4 October 2016). The Zynq Book: About The Book. Available:

http://www.zynqbook.com/about.html
[5] N. Rajovic, P. M. Carpenter, I. Gelado, N. Puzovic, A. Ramirez, and M. Valero, "Supercomputing

with Commodity CPUs: Are Mobile SoCs Ready for HPC?," 2013, pp. 1-12.
[6] (4 October 2016). OpenMP Specifications. Available: http://openmp.org/wp/openmp-

specifications/
[7] (4 September 2016). GitBook · Writing Made Easy. Available: https://www.gitbook.com/
[8] (4 October 2016). UltraFast Design Methodology. Available:

https://www.xilinx.com/products/design-tools/ultrafast.html
[9] M. Keating, D. Flynn, R. Aitken, A. Gibbons, and K. Shi, Low Power Methodology Manual: For

System-on-Chip Design: Springer Publishing Company, Incorporated, 2007.
[10] A. Ahmed and W. Wolf, "Hardware/Software Interface Codesign for Embedded Systems," 2005

2005.
[11] (4 October 2016). Android Best Practices | OpenCV. Available:

http://opencv.org/platforms/android/android-best-practices.html
[12] (4 October 2016). Best Practices in Embedded Systems Programming. Available:

http://www.embedded.com/collections/4398825/Best-practices-in-programming
[13] (4 October 2016). FPGARelated.com - All You Can Eat FPGA. Available:

https://www.fpgarelated.com/
[14] (4 October 2016). EVA Blog. Available: http://www.embedded-vision.com/industry-

analysis/blog
[15] (19 September 2016). Xcell Publications. Available: http://www.xilinx.com/about/xcell-

publications.html
[16] (4 October 2016). EVA Technical Articles. Available: http://www.embedded-

vision.com/industry-analysis/technical-articles
[17] (4 October 2016). Embedded Linux Experts - Free Electrons. Available: http://free-

electrons.com/doc/training/embedded-linux/
[18] (4 October 2016). Training and Videos | Zedboard. Available:

http://zedboard.org/support/trainings-and-videos
[19] (4 October 2016). 1080p60 HD Medical Endoscope. Available:

http://www.xilinx.com/applications/medical/endoscope.html
[20] M. Wolf, High-Performance Embedded Computing: Applications in Cyber-Physical Systems and

Mobile Computing: Newnes, 2014.

http://www.arm.com/products/processors/technologies/neon.php
https://rt.wiki.kernel.org/index.php/RT_PREEMPT_HOWTO
http://www.zynqbook.com/about.html
http://openmp.org/wp/openmp-specifications/
http://openmp.org/wp/openmp-specifications/
https://www.gitbook.com/
https://www.xilinx.com/products/design-tools/ultrafast.html
http://opencv.org/platforms/android/android-best-practices.html
http://www.embedded.com/collections/4398825/Best-practices-in-programming
https://www.fpgarelated.com/
http://www.embedded-vision.com/industry-analysis/blog
http://www.embedded-vision.com/industry-analysis/blog
http://www.xilinx.com/about/xcell-publications.html
http://www.xilinx.com/about/xcell-publications.html
http://www.embedded-vision.com/industry-analysis/technical-articles
http://www.embedded-vision.com/industry-analysis/technical-articles
http://free-electrons.com/doc/training/embedded-linux/
http://free-electrons.com/doc/training/embedded-linux/
http://zedboard.org/support/trainings-and-videos
http://www.xilinx.com/applications/medical/endoscope.html

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 112/115

Copyright TULIPP CONSORTIUM

Page 112 of 115

[21] E. White, Making Embedded Systems: Design Patterns for Great Software: " O'Reilly Media,
Inc.", 2011.

[22] J. C. Russ, "The Image Processing Handbook, Sixth Edition," CRC Press, April 2011 2011.
[23] (4 October 2016). Xilinx Alliance Member Design Services. Available:

http://www.xilinx.com/alliance/design-services.html#certified
[24] A. J. Barry and R. Tedrake, "Pushbroom stereo for high-speed navigation in cluttered

environments," in 2015 IEEE International Conference on Robotics and Automation (ICRA),
2015, pp. 3046-3052.

[25] A. Paolillo, O. Desenfans, V. Svoboda, J. Goossens, and B. Rodriguez, "A New Configurable and
Parallel Embedded Real-time Micro-Kernel for Multi-core platforms," OSPERT 2015, p. 25,
2015.

[26] B. B. Brandenburg, "Scheduling and locking in multiprocessor real-time operating systems,"
Citeseer, 2011.

[27] GPU vs FPGA Performance Comparison. White paper, found:
http://www.bertendsp.com/pdf/whitepaper/BWP001_GPU_vs_FPGA_Performance_Compar
ison_v1.0.pdf, 19.05.2016

[28] Bachrach, Jonathan, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman, Rimas Avižienis,

John Wawrzynek, and Krste Asanović. 2012. “Chisel: Constructing Hardware in a Scala

Embedded Language.” In Proceedings of the 49th Annual Design Automation Conference,

1216–1225. DAC ’12. New York, NY, USA: ACM. doi:10.1145/2228360.2228584.

[29] Bacon, David F., Rodric Rabbah, and Sunil Shukla. 2013. “FPGA Programming for the Masses.”

Commun. ACM 56 (4): 56–63. doi:10.1145/2436256.2436271.

[30] Borkar, Shekhar, and Andrew A. Chien. 2011. “The Future of Microprocessors.”

Communications of the ACM 54 (5): 67. doi:10.1145/1941487.1941507.

[31] Canis, Andrew, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kammoona, Tomasz

Czajkowski, Stephen D. Brown, and Jason H. Anderson. 2013. “LegUp: An Open-Source High-

Level Synthesis Tool for FPGA-Based Processor/Accelerator Systems.” ACM Trans. Embed.

Comput. Syst. 13 (2): 24:1–24:27. doi:10.1145/2514740.

[32] Jahre, Magnus, Asbjørn Djupdal, Lester Kalms, and Ananya Muddukrishna. 2017. “D4.1: Basic

Tool Chain.” TULIPP Project.

[33] Koeplinger, David, Christina Delimitrou, Raghu Prabhakar, Christos Kozyrakis, Yaqi Zhang, and

Kunle Olukotun. 2016. “Automatic Generation of Efficient Accelerators for Reconfigurable

Hardware.” In Proceedings of the 43rd International Symposium on Computer Architecture,

115–127. ISCA ’16. Piscataway, NJ, USA: IEEE Press. doi:10.1109/ISCA.2016.20.

http://www.xilinx.com/alliance/design-services.html#certified

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 113/115

Copyright TULIPP CONSORTIUM

Page 113 of 115

[34] Langdal, Peder Voldnes, Magnus Jahre, and Ananya Muddukrishna. 2017. “Extending OMPT to

Support Grain Graphs.” In Scaling OpenMP for Exascale Performance and Portability, 141–55.

Lecture Notes in Computer Science. Springer, Cham. doi:10.1007/978-3-319-65578-9_10.

[35] Muddukrishna, Ananya, Peter A. Jonsson, Artur Podobas, and Mats Brorsson. 2016. “Grain

Graphs: OpenMP Performance Analysis Made Easy.” In Proceedings of the 21st ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, 28:1–28:13. PPoPP ’16. New

York, NY, USA: ACM. doi:10.1145/2851141.2851156.

[36] Prabhakar, Raghu, David Koeplinger, Kevin J. Brown, HyoukJoong Lee, Christopher De Sa,

Christos Kozyrakis, and Kunle Olukotun. 2016. “Generating Configurable Hardware from

Parallel Patterns.” In Proceedings of the Twenty-First International Conference on Architectural

Support for Programming Languages and Operating Systems, 651–665. ASPLOS ’16. New York,

NY, USA: ACM. doi:10.1145/2872362.2872415.

[37] Stone, John E., David Gohara, and Guochun Shi. 2010. “OpenCL: A Parallel Programming

Standard for Heterogeneous Computing Systems.” Computing in Science & Engineering 12 (3):

66–73. doi:10.1109/MCSE.2010.69.

[38] Wang, Z., B. He, W. Zhang, and S. Jiang. 2016. “A Performance Analysis Framework for

Optimizing OpenCL Applications on FPGAs.” In 2016 IEEE International Symposium on High

Performance Computer Architecture (HPCA), 114–25. doi:10.1109/HPCA.2016.7446058.

[39] Zhong, G., A. Prakash, S. Wang, Y. Liang, T. Mitra, and S. Niar. 2017. “Design Space Exploration

of FPGA-Based Accelerators with Multi-Level Parallelism.” In Design, Automation Test in

Europe Conference Exhibition (DATE), 2017, 1141–46. doi:10.23919/DATE.2017.7927161.

[40] Sadek, Ahmad, Ananya Muddukrishna, Lester Kalms, Asbjørn Djupdal, Ariel Podlubne, Antonio

Paolillo, Diana Goehringer, and Magnus Jahre. 2018. “Supporting Utilities for Heterogeneous

Embedded Image Processing Platforms (STHEM): An Overview.” In Applied Reconfigurable

Computing (ARC).

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 114/115

Copyright TULIPP CONSORTIUM

Page 114 of 115

11 Appendix: Guideline Evaluation Experts

The list of experts that can be called by the quality assurance board to assess the quality of each

guideline and improve the content is described below.

In the following table, the skills are divided into the following sections:

- HW refers to expertise in hardware architecture design, chip & interfaces selection and board

design.

- OS refers to operating system design and necessary low-level software libraries for the

application to utilise the underlying hardware

- Tools refers to vendor tool chains, design and monitoring tools that helps application

developers to implement the code on the hardware

- Application Algorithm refers to the design of the algorithms that will be used in the application

to bring the required functionalities to the product

- Application Software and Firmware refers to the development of the application on the

chosen platform. The application can be software written in C, C++ or any language that can

execute on processors and accelerators or firmware written in VHDL, Verilog or any model-

based programming tools and implemented on a FPGA.

- System refers to the design and development of the whole solution. This is necessary to ensure

integration of all the pieces to a comprehensive product.

REFERENCE:
TULIPP project – Grant

Agreement n° 688403

DATE: 15/05/2018

ISSUE: 2 PAGE: 115/115

Copyright TULIPP CONSORTIUM

Page 115 of 115

Table 3: Tulipp Expertise Panel

	1 INTRODUCTION
	1.1 Towards the Tulipp handbook
	1.2 The Functionality
	1.3 The Trade-offs
	1.4 The Need for Efficiency
	1.5 Standardization
	2.1 Methodology to create guidelines
	2.2 Methodology to select guidelines
	2.2.1 STEP 1: the Guideline Quality Assurance Board
	2.2.2 STEP 2: Quality Assurance report
	2.2.3 STEP 3: The Guideline Improvement Expert Board
	2.2.4 STEP 4: The guidelines database and guideline references

	3 EMBEDDED COMPUTING CHALLENGES
	3.1 An Image-processing Platform
	3.2 Medical Challenges
	3.3 UAV, Drones Challenges
	3.4 ADAS Challenges
	3.5 Challenges Conclusion

	4 HARDWARE PLATFORMS
	4.1 Hardware constraints from the system point of view
	4.2 General platform architecture
	4.3 Processors
	4.4 System on Chip
	4.5 Processor Modules
	4.5.1 Physical connectors
	4.5.2 System on Module (SoM)
	4.5.3 Embedded System Module (ESM)
	4.5.4 PC/104
	4.6 Input / Output Interfaces
	4.6.1 Camera interfaces
	4.6.2 Display interfaces
	4.6.3 Hardware interconnect Protocols

	4.7 Scalability of the compute architecture

	5 OPERATING SYSTEM & LIBRARIES
	5.1 Low memory footprint
	5.2 Scheduling policies
	5.3 Managing hard real-time constraints
	5.4 Choosing application programming interfaces

	6 STRUCTURED PERFORMANCE ANALYSIS: MEETING EMBEDDED IMAGE PROCESSING APPLICATION REQUIREMENTS WITH HIGH PRODUCTIVITY
	6.1 The generic development process
	6.2 Selecting performance analysis tools
	6.3 Programming model selection
	6.4 Evaluating performance analysis tools
	6.5 STHEM: The Tulipp performance analysis tools
	6.6 Tool-chain Standards

	7 PLATFORM, STANDARDS and STANDARDISATION
	7.1 The hardware platform choice
	7.2 The operating system implementation choices
	7.3 The toolchain choices

	8 CONCLUSION
	9 APPENDIX: THE GUIDELINES DATABASE
	9.1 Adjust the Algorithm to the Underlying Architecture
	Guideline advice
	Audience of the guideline
	Author and guideline responsible
	Guideline reviewers
	Category of the guideline
	Insights that led to the guideline
	References
	Recommended implementation method of the guideline along with a solid motivation for the recommendation
	FPGA
	GPU
	CPU

	Instantiation of the recommended implementation method in the reference platform
	Evaluation of the guideline in reference applications

	9.2 Choosing a Real-time Operating System
	Guideline advice
	Audience of the guideline
	Author and guideline responsible
	Guideline reviewers
	Category of the guideline
	Insights that led to the guideline
	Recommended implementation method of the guideline along with a solid motivation for the recommendation
	Instantiation of the recommended implementation method in the reference platform
	Evaluation of the guideline in reference applications

	9.3 Do Not Turn the FPGA Device On and Off too Frequently
	Guideline advice
	Audience of the guideline
	Author and guideline responsible
	Guideline reviewers
	Category of the guideline
	Insights that led to the guideline
	Recommended implementation method of the guideline along with a solid motivation for the recommendation
	Instantiation of the recommended implementation method in the reference platform
	Evaluation of the guideline in reference applications

	9.4 Move Data Processing as Close to the Sensor as Possible
	Guideline advice
	Audience of the guideline
	Author and guideline responsible
	Guideline reviewers
	Category of the guideline
	Insights that led to the guideline
	Recommended implementation method of the guideline along with a solid motivation for the recommendation
	Instantiation of the recommended implementation method in the reference platform
	Evaluation of the guideline in reference applications

	9.5 Should I Use a FPGA or an ASIC?
	Guideline advice
	Audience of the guideline
	Author and guideline responsible
	Guideline reviewers
	Category of the guideline
	Insights that led to the guideline
	Recommended implementation method of the guideline along with a solid motivation for the recommendation
	Instantiation of the recommended implementation method in the reference platform
	Evaluation of the guideline in reference applications

	9.6 Reordering Loops can Reduce Bandwidth Requirements
	Guideline advice
	Audience of the guideline
	Application developers
	Author and guideline responsible
	Guideline reviewers
	Category of the guideline
	Insights that led to the guideline
	Recommended implementation method of the guideline along with a solid motivation for the recommendation
	Instantiation of the recommended implementation method in the reference platform
	Evaluation of the guideline in reference applications

	9.7 Upgrading to newer parts/FPGA architectures
	Guideline advice
	Audience of the guideline
	Author and guideline responsible
	Guideline reviewers
	Category of the guideline
	Insights that led to the guideline
	Recommended implementation method of the guideline along with a solid motivation for the recommendation
	Instantiation of the recommended implementation method in the reference platform
	Evaluation of the guideline in reference applications

	9.8 Optimize nested loops with early exit by measuring the number of unconditional iterations
	Guideline advice
	Audience of the guideline
	Author and guideline responsible
	Guideline reviewers
	Category of the guideline
	Insights that led to the guideline
	Recommended implementation method of the guideline along with a solid motivation for the recommendation
	Instantiation of the recommended implementation method in the reference platform
	Evaluation of the guideline in reference applications

	9.9 Source Code Organization
	Guideline advice
	Audience of the guideline
	Author and guideline responsible
	Guideline reviewers
	Category of the guideline
	Insights that led to the guideline
	Recommended implementation method of the guideline along with a solid motivation for the recommendation
	Instantiation of the recommended implementation method in the reference platform
	Evaluation of the guideline in reference applications

	9.10 Automating the Toolchain
	Guideline advice
	Audience of the guideline
	Author and guideline responsible
	Guideline reviewers
	Category of the guideline
	Insights that led to the guideline
	Recommended implementation method of the guideline along with a solid motivation for the recommendation
	Instantiation of the recommended implementation method in the reference platform
	Evaluation of the guideline in reference applications

	9.11 Timestamp ADC samples promptly
	Guideline advice
	Audience of the guideline
	Author and guideline responsible
	Guideline reviewers
	Category of the guideline
	Insights that led to the guideline
	Recommended implementation method of the guideline along with a solid motivation for the recommendation
	Instantiation of the recommended implementation method in the reference platform
	Evaluation of the guideline in reference applications

	9.12 Save implementation time by delegating customizations to the hardware vendor
	Guideline advice
	Audience of the guideline
	Author and guideline responsible
	Guideline reviewers
	Category of the guideline
	Insights that led to the guideline
	Recommended implementation method of the guideline along with a solid motivation for the recommendation
	Instantiation of the recommended implementation method in the reference platform
	Evaluation of the guideline in reference applications

	9.13 Selecting PSU to supply the chosen hardware
	Guideline advice
	Audience of the guideline
	Author and guideline responsible
	Guideline reviewers
	Category of the guideline
	Insights that led to the guideline
	Recommended implementation method of the guideline along with a solid motivation for the recommendation
	Instantiation of the recommended implementation method in the reference platform
	Evaluation of the guideline in reference applications

	9.14 Manage to accelerate streaming capable functions in a single accelerators
	Guideline advice
	Audience of the guideline
	Author and guideline responsible
	Guideline reviewers
	Category of the guideline
	Insights that led to the guideline
	Recommended implementation method of the guideline along with a solid motivation for the recommendation
	Instantiation of the recommended implementation method in the reference platform
	Evaluation of the guideline in reference applications

	9.15 Integrating your image processing HDL code with the platform
	Guideline advice
	Audience of the guideline
	Author and guideline responsible
	Guideline reviewers
	Category of the guideline
	Insights that led to the guideline
	Recommended implementation method of the guideline along with a solid motivation for the recommendation
	Instantiation of the recommended implementation method in the reference platform
	Evaluation of the guideline in reference applications

	9.16 Use hil testing rather than wait for a final hardware
	Guideline advice
	Audience of the guideline
	Author and guideline responsible
	Guideline reviewers
	Category of the guideline
	Insights that led to the guideline
	Recommended implementation method of the guideline along with a solid motivation for the recommendation
	Instantiation of the recommended implementation method in the reference platform
	Evaluation of the guideline in reference applications

	9.17 How to get EMC2 Board communicate with an UAV
	How to get EMC2 Board communicate with an UAV
	Guideline advice
	Audience of the guideline
	Author and guideline responsible
	Guideline reviewers
	Category of the guideline
	Insights that led to the guideline
	Access the UAV through the Serial Port
	Setting up in Vivado
	Building the distribution with Petalinux
	Generation of an executable file
	Executing an Application

	Evaluation of the guideline in reference applications

	9.18 Use an external constant voltage reference for the ADC instead of the internal reference based on positive supply voltage (VDD)
	Guideline advice
	Audience of the guideline
	Author and guideline responsible
	Guideline reviewers
	Category of the guideline
	Insights that led to the guideline
	Recommended implementation method of the guideline along with a solid motivation for the recommendation
	Instantiation of the recommended implementation method in the reference platform
	Evaluation of the guideline in reference applications

	9.19 Isolate designs to low-power domains to reduce power consumption
	Guideline advice
	Audience of the guideline
	Author and guideline responsible
	Guideline reviewers
	Category of the guideline
	Insights that led to the guideline
	Recommended implementation method of the guideline along with a solid motivation for the recommendation
	Instantiation of the recommended implementation method in the reference platform
	Evaluation of the guideline in reference applications

	9.20 Beware the parameters of external data/clocking when testing or debugging
	Guideline advice
	Audience of the guideline
	Author and guideline responsible
	Guideline reviewers
	Category of the guideline
	Insights that led to the guideline
	Recommended implementation method of the guideline along with a solid motivation for the recommendation
	Instantiation of the recommended implementation method in the reference platform
	Evaluation of the guideline in reference applications

	9.21 Make sure to access streamed data from within accelerated function
	Guideline advice
	Audience of the guideline
	Author and guideline responsible
	Category of the guideline
	Insights that led to the guideline
	Recommended implementation method of the guideline along with a solid motivation for the recommendation
	Instantiation of the recommended implementation method in the reference platform
	Evaluation of the guideline in reference applications

	9.22 Writing for HW
	Guideline advice
	Audience of the guideline
	Author and guideline responsible
	Category of the guideline
	Insights that led to the guideline
	Recommended implementation method of the guideline along with a solid motivation for the recommendation
	Instantiation of the recommended implementation method in the reference platform
	Evaluation of the guideline in reference applications

	9.23 Remove recursion when aiming to parallelize code
	Guideline advice
	Audience of the guideline
	Author and guideline responsible
	Category of the guideline
	Insights that led to the guideline
	Recommended implementation method of the guideline along with a solid motivation for the recommendation
	Instantiation of the recommended implementation method in the reference platform
	Evaluation of the guideline in reference applications
	Related guidelines
	References

	9.24 How to optimize sgm for GPGPU
	Guideline advice
	Audience of the guideline
	Author and guideline responsible
	Guideline reviewers
	Category of the guideline
	Insights that led to the guideline
	Recommended implementation method of the guideline along with a solid motivation for the recommendation
	Instantiation of the recommended implementation method in the reference platform
	Evaluation of the guideline in reference applications
	Related guidelines
	References

	9.25 Save Intermediate Storage with Dataflow Regions
	Guideline advice
	Audience of the guideline
	Author and guideline responsible
	Guideline reviewers
	Category of the guideline
	Insights that led to the guideline
	Recommended implementation method of the guideline along with a solid motivation for the recommendation
	Instantiation of the recommended implementation method in the reference platform
	Evaluation of the guideline in reference applications

	9.26 When to use conditional branching
	Guideline advice
	Audience of the guideline
	Author and guideline responsible
	Guideline reviewers
	Category of the guideline
	Insights that led to the guideline
	Recommended implementation method of the guideline along with a solid motivation for the recommendation
	Instantiation of the recommended implementation method in the reference platform
	Evaluation of the guideline in reference applications
	References

	9.27 Do not use floating point computation on FPGA
	Guideline advice
	Audience of the guideline
	Author and guideline responsible
	Guideline reviewers
	Category of the guideline
	Insights that led to the guideline
	Recommended implementation method of the guideline along with a solid motivation for the recommendation
	Instantiation of the recommended implementation method in the reference platform
	Evaluation of the guideline in reference applications

	9.28 Avoid LibTIFF library and use raw image format
	Guideline advice
	Audience of the guideline
	Author and guideline responsible
	Guideline reviewers
	Category of the guideline
	Insights that led to the guideline
	Recommended implementation method of the guideline along with a solid motivation for the recommendation
	Instantiation of the recommended implementation method in the reference platform
	Evaluation of the guideline in reference applications

	9.29 Use EMVA1288 to compare cameras
	Guideline advice
	Audience of the guideline
	Author and guideline responsible
	Guideline reviewers
	Category of the guideline
	Insights that led to the guideline
	Recommended implementation method of the guideline along with a solid motivation for the recommendation
	Instantiation of the recommended implementation method in the reference platform
	Evaluation of the guideline in reference applications

	9.30 Low latency image processing over TCP IP data stream
	Guideline advice
	Audience of the guideline
	Author and guideline responsible
	Guideline reviewers
	Category of the guideline
	Insights that led to the guideline
	Recommended implementation method of the guideline along with a solid motivation for the recommendation
	Instantiation of the recommended implementation method in the reference platform
	Evaluation of the guideline in reference applications

	9.31 Major challengers to integrating hard real time image processing using neural networks in MPSoCs
	Guideline advice
	Audience of the guideline
	Author and guideline responsible
	Guideline reviewers
	Category of the guideline
	Insights that led to the guideline
	Recommended implementation method of the guideline along with a solid motivation for the recommendation
	Instantiation of the recommended implementation method in the reference platform
	Evaluation of the guideline in reference applications

	9.32 Ensure Dataflow by using Inline Sub-functions
	Guideline advice
	Audience of the guideline
	Author and guideline responsible
	Guideline reviewers
	Category of the guideline
	Insights that led to the guideline
	Recommended implementation method of the guideline along with a solid motivation for the recommendation
	Instantiation of the recommended implementation method in the reference platform
	Evaluation of the guideline in reference applications

	9.33 Data logging using SD Card
	Guideline advice
	Audience of the guideline
	Author and guideline responsible
	Guideline reviewers
	Category of the guideline
	Insights that led to the guideline
	Recommended implementation method of the guideline along with a solid motivation for the recommendation
	Instantiation of the recommended implementation method in the reference platform
	Evaluation of the guideline in reference applications

	10 REFERENCES
	11 Appendix: Guideline Evaluation Experts

