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Abstract. The TULIPP project aims to simplify development of em-
bedded vision applications with low-power and real-time requirements
by providing a complete image processing system package called the
TULIPP Starter Kit. To achieve this, the chosen high-performance em-
bedded vision platform needs to be extended with performance analysis
and power measurement features. The lack of such features plagues most
embedded vision platforms in general and practitioners have adopted ad-
hoc methods to circumvent the problem. In this paper, we describe four
generic utilities that complement and refine the capabilities of existing
platforms for embedded vision applications. Concretely, we describe a
novel power measurement and analysis utility, a platform-optimized im-
age processing library, a dynamic partial reconfiguration utility, and an
utility providing support for using the real-time OS HIPPEROS within
Xilinx SDSoC. Collectively, these utilities enable efficient development
of image processing applications on the TULIPP hardware platform. In
future work, we will evaluate the relative benefit of these utilities on
key embedded image processing metrics such as frame rate and power
consumption.

Keywords: Embedded vision, image processing, performance analysis,
profiling, low-power, dynamic partial reconfiguration

1 Introduction

Image processing is an application domain that deals with image manipulation,
transformation and analysis. Images are a diverse class of input data since their
width, height and pixel-depth depends strongly on the sensor used to acquire
it. The wide variety of sensors and application types makes image processing a
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complex and diverse application domain. Due to the large data volumes, high
performance is needed to analyze images in systems with real-time constraints.
Furthermore, image processing systems are often deployed in scenarios where
power, energy, weight, cost and physical size are first-order constraints. The
result is an overwhelming challenge for developers.

The overall objective of the Towards Ubiquitous Low-power Image Process-
ing Platforms (TULIPP) project is to reduce the magnitude of this challenge
by providing a complete image processing system package that developers can
leverage towards their specific embedded application [9]. We refer to this pack-
age as the TULIPP Starter Kit (TSK) which consists of a a reference handbook,
project applications and a platform instance. The reference handbook is a high-
level best-practice introduction to embedded low-power image processing which
is complemented by a collection of concrete, validated guidelines for embedded
image processing system design. The project applications are industry-grade
examples taken from the medical, automotive and unmanned aerial vehicle do-
mains. Finally, the platform instance consists of a hardware platform, a real-time
operating system and a collection of design and analysis tools. In this paper, we
focus on the design and analysis tools that we have developed during the first
year of the TULIPP project.

The main objective of the TULIPP tools is to contribute to substantially re-
ducing the effort required to implement an image processing solution on selected
heterogeneous platforms. The tools guide the developer through step-wise im-
provements to an image processing implementation and are designed to use the
hardware technology and the operating system services developed in TULIPP.
The overall development process is based on software optimization best practices
by iteratively guiding the developer through successive changes to the code with
the aim of achieving real-time performance with maximum energy efficiency. To
maximize impact, we leverage existing tools where these are available.

We connect all components of the platform instance – hardware, RTOS, and
tools – using an abstraction called the generic development process which is
shown in Figure 1. The generic development process is an iterative process for
programmers to implement image processing applications that meet low-power
requirements while leveraging the heterogeneous processing resources available
on the platform instance. The starting point of the generic development process
is the baseline application that executes with correct sequential behaviour on a
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Fig. 2. The TULIPP-PI1 platform instance held together by STHEM to enable the
generic development process [8]

modern machine with a general-purpose processor. High-level partitioning deci-
sions decide which baseline functions should be accelerated and how. Partitioning
splits off into accelerator-specific development stages that later join to produce
an integrated application with the same correct behaviour as the baseline. The
performance of the integrated application is checked against requirements. If
found lacking, the partitioning and development stages are restarted. In this
manner, programmers iteratively refine the baseline application to approach the
required low-power and high performance features.

A platform instance can be created using any combination of hardware,
RTOS, and development tools. However, support for the generic development
process in each platform instance is unlikely to be readily available. For exam-
ple, all the components of the TULIPP reference platform have independent
workflows that partially overlap with the generic development process, and at
a more basic level have poor to non-existent support for each other. We build
utilities to resolve limitations of components of platform instances to ensure sim-
plified support for the generic development process. Our utilities are collectively
called Supporting uTilities for Heterogeneous EMbedded image processing plat-
forms (STHEM). STHEM is designed to be as vendor-independent as possible to
simplify implementation for arbitrary platform instances. STHEM includes con-
necting glue that interfaces independent components together and standalone
tools that extend individual components to provide complementary features.

The TULIPP toolchain is a combination of STHEM and existing compo-
nents of a given platform instance that work together to simplify the generic
development process for programmers. Figure 2 shows the TULIPP-PI1 plat-
form instance which is platform instance that the TULIPP consortium is cur-
rently focusing most attention on. The reason for the attention is familiarity
with the components that make up the platform instance. TULIPP-PI1 consists
of the Sundance EMC2-ZU3 carrier board with the Xilinx Zynq UltraScale+
MPSoC processor arranged in a two-board configuration to expose a high de-
gree of parallelism to applications. The hardware is operated seamlessly by the
HIPPEROS RTOS. Application development tools in the platform instance are
custom adaptations of Xilinx SDSoC and HIPPEROS tools to support multi-
board acceleration and real-time requirements.
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Table 1. Limitations of TULIPP-PI1 components

Utility EMC2-ZU3 HIPPEROS SDSoC

Power
Measurement
Utility (PMU)

No power
measurement
hardware

Does not quantify
task power
consumption

Cannot correlate
power consumption
with application
phases

HIPPEROS &
SDSoC (HSCL)

Cannot accelerate
tasks on FPGA

No support for
HIPPEROS

HW/SW Image
Processing
Library (IPL)

Few optimized
image processing
functions

Table 1 lists the limitations of the main TULIPP-PI1 components and how
our utilities alleviate these limitations. The current version of STHEM includes
the three utilities that are necessary to provide a minimal end-to-end image
processing system for the TULIPP-PI1 platform:
– The Power Measurement Utility (PMU) provides hardware support for mea-

suring power in the EMC2-ZU3 and enables programmers to correlate in-
stantaneous power samples with concurrent HIPPEROS application tasks
and SDSoC’s HW/SW traces.

– HW/SW Image Processing Libraries (IPL) enables high performance and
productivity for commonly used image processing operations

– Dynamic Partial Reconfiguration Utility (DPRU) enables runtime reconfig-
uration of the FPGA fabric which can be used both within a single image
processing algorithm and by the OS to switch accelerators at runtime.

– The HIPPEROS SDSoC Compatibility Layer (HSCL) adds HIPPEROS sup-
port to SDSoC, enabling programmers to accelerate HIPPEROS application
tasks on FPGA accelerators
The rest of the paper is organized as follows. Section 2 describes the im-

plementation of the PMU, IPL, DPRU and HSCL utilities which is the main
contribution of the paper. We conclude the paper and indicate further work in
Section 3.

2 STHEM Utilities

The STHEM utilities are a set of components that facilitate the development of
low power image processing systems, shown in Figure 2. In the current phase
of the project, they integrate different tools and components in a single suite to
make them easier to use for developers.

2.1 Power Measurement Utility (PMU)

Improving the power efficiency of embedded applications begins with prudent
device selection. For example, choosing FPGAs made with latest FinFET tech-
nology [1]. Once the device is fixed, power efficiency is refined to desired levels
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in successive stages of profiling and optimization. Profiling uses power mod-
els during early design phases, and shifts to real-hardware measurements post-
implementation. While standard power profiling methods are available for HPC-
like systems [16], power profiling in embedded systems remains largely ad-hoc [17,
26, 2, 4, 13].

The Xilinx Zynq-based embedded platform that we have chosen for the ap-
plications of the TULIPP project, has poor support for power profiling. Neither
hardware nor vendor tools have support for measuring power consumption at
runtime. This complicates selection of application phases to direct power opti-
mizations and makes it difficult to judge whether low-power requirements are
met. Ultimately, a key contribution of the project – design guidelines for low-
power embedded vision – cannot be demonstrated.

To solve this problem, we first looked towards solutions recommended by ven-
dors. Xilinx recommends adding on-board current sensors such as precision shunt
resistors to provide current measurements to the XADC [27], a hard-IP block
in the FPGA substrate of the Zynq. A better solution, also recommended by
Xilinx, is to replace the voltage regulators on the hardware platform with digital
power controllers from Texas Instruments (TI) to measure current and voltages
supplied to all power planes [24]. Another option is to use special measurement-
friendly variants of the embedded platform built by third-parties [23]. While
useful, these recommended hardware modifications were prohibitive due to cost
reasons. We also deliberated about a model-only approach, i.e., use the Xilinx-
provided power model called the XPE [26] to refine power efficiency as much as
possible during early design phases. However, XPE can at best provide coarse-
grained estimates and cannot correlate power problems with application phases.

We decided in the end to build external, cost-effective measurement hard-
ware, complemented by specialized profiling software, to diagnose power prob-
lems of TULIPP applications at runtime and, in general, advance the state-of-
the-art in power profiling of embedded vision applications.

Power profiling implementation: Our power profiling approach is pack-
aged as the PMU. It essentially consists of an external measurement board that
communicates power measurements to profiling tools on the host computer, as
shown in Figure 3. The external measurement board is custom-designed and has
multiple current sensors that measure power consumed by individual units of
interest on the embedded platform, i.e., the EMC2-DP board in TULIPP-PI1.
Profiling tools collect additional profiling data from EMC2-DP and analyze it
together with power measurements to diagnose problems. Problems are shown
on various visualization widgets, some of which are part of existing vendor tools.

We developed an external measurement board which we call Lynsyn. Lyn-
syn uses two INA169 current-shunt monitors [22] from TI to measure and am-
plify currents across 0.1Ω shunt resistors connected in series with high-side cur-
rent wires/PCB-tracks that drive units of interest on the EMC2-DP. Measure-
ments from the current-shunt monitors are sampled by a Teensy 3.6 micro-
controller [21] using 13-bits and transmitted over USB to the host computer
at approximately 12K samples per second. This rate supports measurements of
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Fig. 3. Overview of power profiling

application tasks with runtime longer than 83 micro-seconds. Synchronization
signals are sent over JTAG and LVTTL GPIO ports on the EMC2-DP to the
Teensy to control measurements. At present, we consider two units of interest –
the Zynq SoM and the FMC port that connects to the camera. Lynsyn can sense
currents between 250 mA to 3 A. Measuring currents lower than 250 mA is pos-
sible by using larger shunt resistors. The BoM cost of Lynsyn is less than 50 US
dollars. A protoboard version of Lynsyn connected to the EMC2 (non-stacked)
is shown in Figure 4.

We validated the current measurements from Lynsyn using the Uni-T UT139C
true-RMS digital multimeter as a reference for two hours of continuous opera-
tion. Current measurements had negligible differences compared to the reference.
Rigorous testing with a constant current load is planned as part of future work.

Lynsyn’s design assumes that it is possible to insert shunt resistors in all
current-carrying lines of interest. However, not all current-carrying lines are ac-
cessible. For example, rails that supply power to the FPGA substrate of the Zynq
SoM are buried due to dense packaging constraints. Potential workarounds in-
clude using current-mirrors to avoid inserting shunt resistors [13], or using special
test fixtures that expose current-carrying lines on top layers [23].

Power visualizations: Current samples sent from Lynsyn to the host com-
puter are converted to power readings assuming a constant supply voltage and
stored in the Common Trace Format (CTF) [6] by a profiling tool. CTF is a
flexible, high-throughput, binary trace format developed by the Multicore As-
sociation. The power traces can be visualized using Trace Compass, an open-
source, standalone viewer popularized by the Linux Tracing Toolkit (LTTng)
project [14]. Trace Compass enables correlation and filtering of power traces. An
example is provided in Figure 5.
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Fig. 4. Lynsyn, the power measurement board connected the EMC2-DP. The current
supply wire connects to a current sensor. Synchronization signals are used to start and
stop power profiling.

Fig. 5. Inspecting a power trace on Trace Compass

We visualize instantaneous power computed from the current samples on a
running line graph as shown in Figure 6. This helps understand power trends in
real-time as the application executes. Abrupt, large changes in power values are
flagged on the visualization to alert users.

SDSoC enables users to understand timing of application events in a timeline
visualization called the AXI Trace Viewer [25]. We extend the AXI Trace Viewer
to visualize power traces correlated with application phases as shown in Figure
7. This enables programmers to conveniently attribute power consumption to
concurrent application events and isolate power problems. However, we are not
able to refine user interaction in this mode since SDSoC is closed-source software.

Improving the PMU: As part of future work, we intend to profile application-
specific data such as the program counter and parallelization events via the
JTAG port while collecting power samples. The idea is to analyze this data to
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Fig. 6. Power monitor visualization tracks instantaneous power consumption during
application execution

Fig. 7. Attributing power consumption to application events on SDSoC’s AXI Trace
Viewer

pinpoint power problems on high-level semantic visualizations such as control
flow graphs and grain graphs [15].

2.2 HW/SW Image Processing Libraries (IPL)

The HW/SW Image Processing Library helps programmers implement acceler-
ated image processing applications. A template-based software library for stream-
ing based applications has been implemented (C++). FPGAs can outperform
other hardware architectures, like CPUs and GPUs, for streaming based ap-
plications as shown in [11]. The provided functions have been optimized to be
accelerated on FPGAs using SDSoC. Furthermore, the library has been opti-
mized for latency, memory throughput and resource usage. The functions follow
the OpenVX specification [12], to address a large group of users. OpenVX is
an open, royalty-free standard for cross platform acceleration of computer vision
applications. Additionally, more data types and auto-vectorization are supported
for most functions.

Normally, an image processing function processes one pixel per clock cycle.
Using vectorization, it can process one, two, four or even eight pixel per clock
cycle. The maximum bit-width of the complete vector is set to 64-bit. Therefore,
the maximum vectorization depends on the bit-width of the image data. One
advantage of vectorization is the possibility to process higher image resolution.
Another advantage is that the frequency of the design can be reduced. Therefore,
the power consumption of applications decreases.
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The library contains several compile time optimizations, to reduce inputs
from users. For example, the Gaussian kernel coefficients are computed at com-
pile time using the standard deviation and kernel size. They are computed using
double precision floating point numbers, then normalized and converted to fixed-
point numbers. This computation does not consume extra resources of the FPGA
logic. The developer will also get compile time errors if unsupported data types
or combinations of them are used, to increase usability. Image data for functions
can be in 8-bit, 16-bit or 32-bit fixed-point representation (unsigned/signed).

There are three groups of library functions. The first group consists of all
windowed functions. This includes 3x3 Scharr, 3x3 Sobel, 3x3 Median, Box,
Gaussian Convolution and Custom Convolution filters. All functions are nor-
malized to avoid overflow (below 1.0 for unsigned and between 0.5 and -0.5 for
signed) and optimized in their structure to reduce resource usage. The windowed
operations support replicated, constant and undefined border handling.

The second group consists of all pixel-wise functions, which are basically bit-
wise and arithmetic operations. This includes: Absolute Difference, Arithmetic
Addition, Arithmetic Subtraction, Gradient Magnitude, Pixel-wise Multiplica-
tion, Bitwise And, Bitwise Xor, Bitwise Or and Bitwise Not. The arithmetic
operations support conversion policies against overflow and different rounding
policies if needed.

The last group contains all remaining functions. This includes the Convert Bit
Depth, Convert Color, Scale Down, Integral Image, Histogram and Table Lookup
functions. The Color Conversion function can convert between the RGB, RGBX
and grayscale formats. The Scale Down function supports nearest neighbor and
bilinear interpolation.

2.3 Dynamic Partial Reconfiguration Utility (DPRU)

SoCs such as the Xilinx Zynq combine hardened processors with programmable
logic which can be used to accelerate application hot-spots. The programmable
logic can be partitioned into static and dynamic regions. The dynamic regions
can be reconfigured at runtime while the logic in the static region is fixed. The
procedure of reconfiguring the dynamic region is called Dynamic Partial Re-
configuration (DPR) [5, 3]. DPR allows upgrading the design without the need
to erase the whole FPGA and saves programming time. Also, it allows more
applications to be time-multiplexed onto the same FPGA.
The dynamic partial reconfiguration feature is used in TULIPP to:
– Reduce the need for FPGA-resources by fitting more functionality on the

same set of programmable hardware.
– Reduce power consumption by disabling dynamic regions of the FPGA that

are not used and re-operating them when they are needed.
– Runtime upgrading which enables more implementation techniques to be

deployed at run-time.
DPR is being integrated into the STHEM utilities to allow the TULIPP platform
user to update the design freely. Concretely, a set of TCL scripts have been de-
veloped to enable DPR within the Xilinx SDSoC high-level workflow [10]. These
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scripts extend SDSoC functionality for embedded application developments and
add more options to the software-hardware partitioning task. In future work,
we plan to add optimization logic that analyzes the design to help decide which
parts of the application are implemented in static and dynamic regions.

2.4 HIPPEROS SDSoC Compatibility Layer (HSCL)

Xilinx SDSoC is a tool for developing applications for Xilinx System-on-Chip
(SoC) architectures and enables the programmer to target its C/C++ code to
one of the CPU cores or, through high level synthesis, to the FPGA fabric. HIP-
PEROS [7] is a multi-core real-time operating system (RTOS) that is adapted
for high performance and safety-critical embedded systems applications [8]. The
HIPPEROS SDSoC Compatibility Layer is added to Xilinx SDSoC to enable SD-
SoC to compile applications for HIPPEROS. Previous research work involving
the HIPPEROS RTOS includes multi-core micro-kernel design [18], power-aware
real-time scheduling [20] and mixed-criticality scheduling [19].

SDSoC is not easily extendable and supports only bare metal, FreeRTOS
and Linux applications. Being a closed-source application, it is not possible for
a third party to add an additional OS to SDSoC. The approach chosen in this
project was to add HIPPEROS support under the disguise of being FreeRTOS.

To achieve this, the following components were necessary:
– SDSoC platform description: The SDSoC platform description is used by SD-

SoC to target a specific hardware platform. In addition to information about
the available hardware, it also contains the necessary configuration files and
libraries to compile for one of the three supported operating systems. HSCL
adds to the platform description by modifying the FreeRTOS configuration
files such that HIPPEROS binaries are used instead of FreeRTOS.

– C library: Both SDSoC and HIPPEROS need to be initialized correctly when
the developed application boots. We cannot modify the SDSoC libraries, so
the solution was to put all initialization code into a special C library that
automatically gets linked to by the SDSoC toolchain. Additionally, SDSoC
requires some specific ABI compilation flags to set for every object file linked
within the accelerated program. Therefore, we created a specific HIPPEROS
distribution dedicated to the Tulipp platform and the compatibility with
SDSoC.

– Scripts: Unlike FreeRTOS, HIPPEROS needs an additional step after com-
pilation to package the resulting elf file into an executable binary. The neces-
sary script for doing this is provided and presented to the user in the SDSoC
SD-card generation step.

– Bootloader: In order to correctly boot a HIPPEROS application, a boot-
loader is necessary. This is also the case when starting the application from
the Xilinx debugger. It is not sufficient to upload the binary files to memory
and jump to the entry address. Therefore, a small bootloader is provided
such that debugging and tracing from the SDSoC GUI or command line is
possible.
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3 Conclusion and Further Work

In this paper, we have presented the underlying philosophy of the analysis and
development tools that will be developed during the TULIPP project. Further,
we have described the implementation of our first four utilities: a novel power
measurement and analysis utility (the PMU), a platform-optimized image pro-
cessing library (the IPL), a dynamic partial reconfiguration utility (the DPRU),
and an utility providing support for using the HIPPEROS RTOS within Xilinx
SDSoC (the HSCL).

The work achieved so far forms the basis of the research that will be carried
out during the second half of the TULIPP project. We will leverage the developed
utilities to provide novel performance analysis and design space exploration tools
that specifically focus on embedded image processing systems. In addition, we
aim to quantitatively compare our image processing library to other libraries and
full-custom FPGA implementations. Finally, we will use the utilities to improve
the TULIPP use case applications. The use cases are industry-grade applications
within the medical, automotive and unmanned aerial vehicle domains.
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